Modelling nutrient uptake: a possible indicator of phosphorus deficiency

Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 313 ◽  
Author(s):  
D. S. Mendham ◽  
P. J. Smethurst ◽  
P. W. Moody ◽  
R. L. Aitken

An understanding of the processes controlling soil nutrient supply and plant uptake has led to process-based models that can predict nutrient uptake and the concentration gradient that develops at the root surface. By using this information, it may be possible to develop an indicator of soil phosphorus status based on the predicted uptake and/or concentration of phosphorus (P) at the root surface. To identify the potential for such a test, the relationships between model output and observed plant growth were examined using data from a published experiment. The experiment was initially designed to investigate the relationship between common indices of soil-available P and the growth of maize (Zea mays) in 26 surface soils from Queensland. There was a high correlation between observed and predicted P uptake, and between relative dry matter yield and predicted P uptake. The predicted concentration of P at the root surface was also highly correlated with P uptake and dry weight increase. It is hypothesised that the short growth period (25 days) was responsible for the high correlation between P uptake and measured soil solution P. The hypothesis that a predicted concentration of P at the root surface or predicted P uptake may be valuable indicators of P deficiency in the longer term still remains to be tested.

2008 ◽  
Vol 53 (No. 3) ◽  
pp. 113-119 ◽  
Author(s):  
A.Z. Ren ◽  
Y.B. Gao ◽  
F. Zhou

It has been demonstrated that endophyte-infected (EI) ryegrass performed better in response to N deficiency than its endophyte-free (EF) counterpart. When P is considered, there is a lack of related information. In this study, <i>Lolium perenne</i> L. infected with <i>Neotyphodium lolii</i> was employed to establish EI and EF populations. Soil-grown EI and EF ryegrass were tested for their responses to P deficiency. The results showed that the endophyte infection improved the adaptability of ryegrass to P deficiency. When P was limited, EI roots were significantly longer (EI, 398.8; EF, 323.4 m/pot) and heavier (EI, 30.58; EF, 23.20 g/pot) than EF roots; the root: shoot ratio of EI plants was greater than that of EF plants (<i>P</i> < 0.05). The content of total phenolics and organic acids was significantly greater for EI roots than for EF roots at low P supply; the concentration of both, however, was not improved by the endophyte infection. This suggested that it was the higher root dry weight (DW) that contributed to the higher content of total phenolics and organic acids for EI plants, and the endophyte infection might have negligible effects on chemical modification of perennial ryegrass. Endophyte infection did not increase P uptake rate but did significantly improve P use efficiency of ryegrass in response to P deficiency (EI, 0.734; EF, 0.622 g DW/mg P).


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1161e-1161
Author(s):  
D.A.J. McArthur ◽  
N.R. Knowles

The growth response of potato to infection by vesicular-arbuscular mycorrhizal fungi (VAM) (Glomus dimorphicum, G. intraradices, and G. mosseae), at increasing levels of soil phosphorus (P), was related to VAM-altered mineral status of the plant. In addition, the morphological development of the VAM was characterized using light and scanning electron microscopy.Four weeks after inoculation, arbuscules and coiled hyphae were the predominate fungal structures within the roots, however, vesicle development increased steadily over the remainder of the 12 week growth period. As expected, the percent infection of roots by VAM decreased with increasing soil-P level. Leaf area, relative growth rate (RGR), lateral branching and root dry weight were increased by VAM, although the relative-response diminished with increasing soil-P level. A similar response to VAM-infection was evident for the concentration of and total shoot N, P and K. Examination of the shoot N status indicated that VAM influenced the rates at which the plant was partitioning N into various N pools. But again, differences between non-VAM and VAM plants tended to decrease with increasing soil-P level. These results indicate that VAM modification of dry matter accumulation and nutrient uptake is mostly a consequence of the alleviation of P-deficiency of the plant and the improved growth of roots, allowing increased mineral absorption.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1401
Author(s):  
Venkata Ravi Prakash Reddy ◽  
Shouvik Das ◽  
Harsh Kumar Dikshit ◽  
Gyan Prakash Mishra ◽  
Muraleedhar S. Aski ◽  
...  

Mungbean (Vignaradiata L. Wilczek) is an early maturing legume grown predominantly in Asia for its protein-rich seeds. P deficiency can lead to several physiological disorders which ultimately result in a low grain yield in mungbean. The genetic dissection of PUpE (Puptake efficiency) and PUtE (P utilization efficiency) traits are essential for breeding mungbean varieties with a high P uptake and utilization efficiency. The study involves an association mapping panel consisting of 120 mungbean genotypes which were phenotyped for total dry weight, P concentration, total P uptake, and P utilization efficiency under low P (LP) and normal P (NP) conditions in a hydroponic system. A genotyping-by-sequencing (GBS) based genome-wide association study (GWAS) approach was employed to dissect the complexity of PUpE and PUtE traits at the genetic level in mungbean. This has identified 116 SNPs in 61 protein-coding genes and of these, 16 have been found to enhance phosphorous uptake and utilization efficiency in mungbeans. We identified six genes with a high expression (VRADI01G04370, VRADI05G20860, VRADI06G12490, VRADI08G20910, VRADI08G00070 and VRADI09G09030) in root, shoot apical meristem and leaf, indicating their role in the regulation of P uptake and utilization efficiency in mungbean. The SNPs present in three genes have also been validated using a Sanger sequencing approach.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 158
Author(s):  
Jiang Tian ◽  
Fei Ge ◽  
Dayi Zhang ◽  
Songqiang Deng ◽  
Xingwang Liu

Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danilo Silva Almeida ◽  
Lucas Benes Delai ◽  
Alexandra Christine Helena Franklan Sawaya ◽  
Ciro Antonio Rosolem

Abstract It has been suggested that some tropical grasses can acquire phosphorus (P) from hematite and gypsite by exuding organic acid anions (OAs). However, it remains to be determined exactly which OAs could be involved in each case. The objective of this study was to verify the exudation OAs by ruzigrass (Urochloa ruziziensis), palisade grass (U. brizantha), and Guinea grass (Megathyrsus maximus) as a response to P deficiency. The grasses were grown in leachate columns with adequate and deficient P nutrient solutions. The concentration of OAs in the leacheate and root surface, as well as shoot and root dry matter, and P uptake were determined. Citrate, isocitrate, and malate concentration in leachates and root surfaces increased with P starvation, mainly for the Urochloa grasses. Oxalate exudation was similar for the grasses under adequate P supply, but was lower in Guinea grass under P starvation. Palisade grass showed a higher concentration of total OAs in the root surface than the other species due to a great production of oxalate and isocitrate. Palisade grass showed greater dry matter yields regardless of P deficiency, and Guinea grass always had the higher shoot:root ratio. Urochloa grasses have a higher capacity to cope with low P availability by exuding OAs along with a lower shoot:root ratio than Guinea grass.


2008 ◽  
Vol 133 (4) ◽  
pp. 515-520 ◽  
Author(s):  
Matthew D. Taylor ◽  
Paul V. Nelson ◽  
Jonathan M. Frantz

Sudden pH decline (SPD) describes the situation where crops growing at an appropriate pH rapidly (within 1–2 weeks) cause the substrate pH to shift downward one to two units. ‘Designer Dark Red’ geraniums (Pelargonium ×hortorum Bailey) were grown in three experiments to assess possible effects of light on SPD and phosphorous (P) uptake. The first experiment tested the effect of four light intensities (105, 210, 575, and 1020 ± 25 μmol·m−2·s−1) on substrate acidification. At 63 days, substrate pH declined from 6.0 to 4.8 as light intensity increased. Tissue P of plants grown at the highest two light levels was extremely low (0.10%–0.14% of dry weight). P stress has been reported to cause acidification. Because plants in the two lowest light treatments had adequate P, it was not possible to determine if the drop in substrate pH was a direct light effect or a combination of light and P. The second experiment used a factorial combination of the three highest light levels from Expt. 1 and five preplant P rates (0, 0.065, 0.13, 0.26, or 0.52 g·L−1 substrate) to assess this question. When tissue P concentrations were deficient, pH decreased by 0.6 to 1.0 pH units within 2 weeks and deficiency occurred more often with high light intensity. These data indicated that P deficiency caused substrate acidification and indicated the possibility that P uptake was suppressed by high light intensity. The third experiment was conducted in hydroponics to determine the direct effect of high light intensity on P uptake. In this experiment, cumulative P uptake per gram root and the rate of P uptake per gram root per day both decreased 20% when light intensity increased from 500 to 1100 μmol·m−2·s−1. It is clear from this study that P deficiency causes geraniums to acidify the substrate and that high light suppresses P uptake.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246944
Author(s):  
Xin Meng ◽  
Wei-Wei Chen ◽  
Yan-Yu Wang ◽  
Zeng-Rong Huang ◽  
Xin Ye ◽  
...  

Phosphorus (P) is an essential macronutrient for plant growth, development and production. However, little is known about the effects of P deficiency on nutrient absorption, photosynthetic apparatus performance and antioxidant metabolism in citrus. Seedlings of ‘sour pummelo’ (Citrus grandis) were irrigated with a nutrient solution containing 0.2 mM (Control) or 0 mM (P deficiency) KH2PO4 until saturated every other day for 16 weeks. P deficiency significantly decreased the dry weight (DW) of leaves and stems, and increased the root/shoot ratio in C. grandis but did not affect the DW of roots. The decreased DW of leaves and stems might be induced by the decreased chlorophyll (Chl) contents and CO2 assimilation in P deficient seedlings. P deficiency heterogeneously affected the nutrient contents of leaves, stems and roots. The analysis of Chl a fluorescence transients showed that P deficiency impaired electron transport from the donor side of photosystem II (PSII) to the end acceptor side of PSI, which showed a greater impact on the performance of the donor side of PSII than that of the acceptor side of PSII and photosystem I (PSI). P deficiency increased the contents of ascorbate (ASC), H2O2 and malondialdehyde (MDA) as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in leaves. In contrast, P deficiency increased the ASC content, reduced the glutathione (GSH) content and the activities of SOD, CAT, APX and monodehydroascorbate reductase (MDHAR), but did not increase H2O2 production, anthocyanins and MDA content in roots. Taking these results together, we conclude that P deficiency affects nutrient absorption and lowers photosynthetic performance, leading to ROS production, which might be a crucial cause of the inhibited growth of C. grandis.


Author(s):  
Sylvia Morais de Sousa ◽  
Christiane Abreu de Oliveira ◽  
Daniele Luiz Andrade ◽  
Chainheny Gomes de Carvalho ◽  
Vitória Palhares Ribeiro ◽  
...  

1998 ◽  
Vol 131 (1) ◽  
pp. 79-85 ◽  
Author(s):  
O. FAGBOLA ◽  
O. OSONUBI ◽  
K. MULONGOY

A field trial on alley-cropping was conducted at the University of Ibadan research farm in the 1990/91 cropping season to assess the contributions of arbuscular mycorrhizal (AM) fungi and hedgerow woody legumes to the yield and nutrient uptake of cassava (Manihot esculenta Crantz) as an intercrop in an infertile soil. The trial also investigated the influence of AM fungi on the interplanting of a non-nodulating woody legume Senna siamea (syn. Cassia siamea) with a nodulating woody legume (Leucaena leucocephala).AM contributions to cassava were greater than the hedgerow contributions, which demonstrated that AM associations are an essential component in the nutrition of cassava. In contrast to cassava, AM inoculation only influenced the leaf dry weight and uptake of nutrients of non-interplanted woody legumes but not the above-ground biomass and P uptake of interplanted woody legumes. However, non-inoculated interplanted Leucaena benefited more from indigenous AM fungi than the competing Senna. The negative contributions to the nutrient uptake (K, Ca and Mg) of cassava by hedgerows and the lack of response to AM inoculation in interplanted hedgerow woody legumes could be attributed to root competition among the different plant species growing in close proximity to each other. The present results show that cassava benefits more from AM association than Leucaena which in turn benefits more than Senna in an alley-cropping system.


1982 ◽  
Vol 12 (3) ◽  
pp. 627-631
Author(s):  
P. E. Pope

Seedlings from four families of American sycamore (Platanusoccidentalis L.) were grown in a glasshouse for 16 weeks in a Groseclose silt loam soil (Typic Hapludults) in which the soil reaction (pH) had been adjusted from 6.20 to 4.25, 5.50, 6.75, or 8.00 by the addition of Al2(SO4)3 or CaCO3. On the average, seedling height and total dry weight increased with increasing soil reaction to pH 6.7 and then declined. Percentage of foliar P, K, and Ca was largest at a soil pH of 5.5 and declined with an increase or decrease in soil reaction. Foliar P, K, and Ca content is highly correlated with soil pH, seedling total dry weight, and available soil nutrients. Growth of seedlings from individual families, in response to alterations in soil pH, is variable, but the data suggest certain families exhibit significantly greater growth and nutrient uptake than others at soil pH values below 6.8. This fact may be of prime concern in hardwood seedling nursery production, where specific families are being grown, and in the evaluation of growth responses in tree improvement programs.


Sign in / Sign up

Export Citation Format

Share Document