Relationships of water repellency to soil properties for different spatial scales of study

Soil Research ◽  
1998 ◽  
Vol 36 (3) ◽  
pp. 495 ◽  
Author(s):  
I. McKissock ◽  
R. J. Gilkes ◽  
R. J. Harper ◽  
D. J. Carter

In order to predict the occurrence of water repellency, which is a labile property, from field survey data obtained throughout the year, it is necessary to identify predictive relationships between water repellency and commonly measured soil properties. This paper evaluates these relationships for diverse soil assemblages. These soil assemblages include a set of reference soils from the south-west of Western Australia (an area of 250 000 km2), more intensively sampled suites of soils in several smaller soil{landscape associations within the south-west of Western Australia (≅1000 km2), soils from single farms (1-10 km2) and transects (≅0·001 km2), and single soil profiles (≅m2). The severity of water repellency was assessed by measuring water drop penetration time in seconds (WDPT) and was related to intrinsic properties of soils using log-transformed data. For the set of soils from the West Midland Sandplain the type of land use was also considered as a variable. There is a general tendency for WDPT to increase as organic matter content increases and decrease as the content of fine mineral material increases (clay, silt, very fine sand). However, there is no single soil property that is able to predict WDPT adequately. Furthermore, reliability of prediction decreases as the area of sampling increases. There appear to be no systematic differences in the capacity of organic matter from pasture or crop to induce water repellency, but increments of organic matter under bush increase water repellency at a greater rate than does organic matter from crop or pasture.

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 209-225 ◽  
Author(s):  
P. Pereira ◽  
X. Úbeda ◽  
J. Mataix-Solera ◽  
M. Oliva ◽  
A. Novara

Abstract. Fire is a natural phenomenon with important implications on soil properties. The degree of this impact depends upon fire severity, the ecosystem affected, topography of the burned area and post-fire meteorological conditions. The study of fire effects on soil properties is fundamental to understand the impacts of this disturbance on ecosystems. The aim of this work was to study the short-term effects immediately after the fire (IAF), 2, 5, 7 and 9 months after a low-severity spring boreal grassland fire on soil colour value (assessed with the Munsell colour chart), soil organic matter content (SOM) and soil water repellency (SWR) in Lithuania. Four days after the fire a 400 m2 plot was delineated in an unburned and burned area with the same topographical characteristics. Soil samples were collected at 0–5 cm depth in a 20 m × 20 m grid, with 5 m space between sampling points. In each plot 25 samples were collected (50 each sampling date) for a total of 250 samples for the whole study. SWR was assessed in fine earth (< 2 mm) and sieve fractions of 2–1, 1–0.5, 0.5–0.25 and < 0.25 mm from the 250 soil samples using the water drop penetration time (WDPT) method. The results showed that significant differences were only identified in the burned area. Fire darkened the soil significantly during the entire study period due to the incorporation of ash/charcoal into the topsoil (significant differences were found among plots for all sampling dates). SOM was only significantly different among samples from the unburned area. The comparison between plots revealed that SOM was significantly higher in the first 2 months after the fire in the burned plot, compared to the unburned plot. SWR of the fine earth was significantly different in the burned and unburned plot among all sampling dates. SWR was significantly more severe only IAF and 2 months after the fire. In the unburned area SWR was significantly higher IAF, 2, 5 and 7 months later after than 9 months later. The comparison between plots showed that SWR was more severe in the burned plot during the first 2 months after the fire in relation to the unburned plot. Considering the different sieve fractions studied, in the burned plot SWR was significantly more severe in the first 7 months after the fire in the coarser fractions (2–1 and 1–0.5 mm) and 9 months after in the finer fractions (0.5–0.25 and < 0.25 mm). In relation to the unburned plot, SWR was significantly more severe in the size fractions 2–1 and < 0.25 mm, IAF, 5 and 7 months after the fire than 2 and 9 months later. In the 1–0.5- and 0.5–0.25 mm-size fractions, SWR was significantly higher IAF, 2, 5 and 7 months after the fire than in the last sampling date. Significant differences in SWR were observed among the different sieve fractions in each plot, with exception of 2 and 9 months after the fire in the unburned plot. In most cases the finer fraction (< 0.25 mm) was more water repellent than the others. The comparison between plots for each sieve fraction showed significant differences in all cases IAF, 2 and 5 months after the fire. Seven months after the fire significant differences were only observed in the finer fractions (0.5–0.25 and < 0.25 mm) and after 9 months no significant differences were identified. The correlations between soil Munsell colour value and SOM were negatively significant in the burned and unburned areas. The correlations between Munsell colour value and SWR were only significant in the burned plot IAF, 2 and 7 months after the fire. In the case of the correlations between SOM and SWR, significant differences were only identified IAF and 2 months after the fire. The partial correlations (controlling for the effect of SOM) revealed that SOM had an important influence on the correlation between soil Munsell colour value and SWR in the burned plot IAF, 2 and 7 months after the fire.


Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1109 ◽  
Author(s):  
RJ Harper ◽  
RJ Gilkes

The incidence and severity of water repellency was related to five soil class (FC I-V), based on the field texture and dry consistence of the soil surface horizons, derived from a soil survey near Jerramungup, Western Australia. Water repellency was most severe on the FC I soils (median clay content 1.5%), with 66% of samples having water repellency based on the water drop penetration time (WDPT) test >10 s. Corresponding values for the FC II and III soils (2.5%, 4.0% clay) were 37% and 20%. Water repellency did not occur on the most clayey FC IV (8.1% clay) and FC V (22.1% clay) soils. Following stratification of Ap horizon soils by 1% increments of clay content, highly significant linear relationships occurred between log [water drop penetration time (WDPT)] and log [organic carbon (OC)] for the 1-2, 2-3 and 3-4% clay classes, these respectively explaining 50, 35 and 37% of the variation in water repellency. The role of organic carbon in promoting water repellency decreases markedly with increasing clay content, with WDPT being proportional to OC4.5, OC3.9 and OC3.0 for each of these clay classes. A multivariate relationship using measures of amorphous iron, clay and organic matter explained 63% of the variation in water repellency, and this multivariate dependency provides an explanation of the poor bivariate relationships between either clay or organic carbon content and water repellency reported in previous studies. There is a strong geomorphic control of the clay content in the soil surface horizons. Given the effect that clay content has on water repellency, the susceptibility of soils to water repellency can be mapped across farms, with the actual expression of water repellency depending on soil organic matter content, and hence land use. Such discrimination will allow the prediction of water erosion hazard and identify soils requiring ameliorative treatments.


2021 ◽  
Vol 69 (3) ◽  
pp. 347-355
Author(s):  
Peter Šurda ◽  
Ľubomír Lichner ◽  
Jozef Kollár ◽  
Anton Zvala ◽  
Dušan Igaz

Abstract Pines are widely planted for sand dune stabilization and their cultivation results in the changes in physical, chemical, hydro-physical and water repellency properties. Soil properties were evaluated at three Scots pine plantations (PF1, PF2 and PF3) close to Studienka village, Borská nížina lowland (southwestern Slovakia) during hot and dry summer period. The PF1 site is a newly established plantation, the PF2 site is about 30 years old plantation, and the PF3 site is about 100 years old plantation. Here, we estimated the differences in pH, soil organic carbon content, Cox, particle size distribution, PSD, saturated, ks, and unsaturated, k(–2 cm), hydraulic conductivity, water, Sw , and ethanol, Se , sorptivity, water drop penetration time, WDPT, and repellency index, RI. It was found that Cox varies most significantly with plantation age, and relative differences in PSD and pH were lower than the relative difference in Cox. The PF3 site differs the most from the other two, especially in Cox and in the content of sand fraction. It can be attributed to the older age of the plantation, which represents a more advanced stage of succession accompanied by an accumulation of soil organic matter. Relationships between Cox, k(–2 cm), RI, and WDPT and pine forest age were described by appropriate mathematical models. We found a similarity between k(–2 cm) and RI relationships vs. pine forest age (exponential models), and between Cox and WDPT relationships vs. pine forest age (first and second-order polynomial models). The latter similarity can be supported by the fact that soil water repellency is induced by the hydrophobic and amphiphilic components of soil organic matter.


2014 ◽  
Vol 62 (4) ◽  
pp. 309-315 ◽  
Author(s):  
D.A.L. Leelamanie

Abstract The wetting rate of soil is a measure of water repellency, which is a property of soils that prevents water from wetting or penetrating into dry soil. The objective of the present research was to examine the initial water repellency of organic manure amended soil, and its relation to the soil organic matter (SOM) depletion rates in the laboratory. Soil collected from the Wilpita natural forest, Sri Lanka, was mixed with organic manure to prepare soil samples with 0, 5, 10, 25, and 50% organic manure contents. Locally available cattle manure (CM), goat manure (GM), and Casuarina equisetifolia leaves (CE) were used as the organic manure amendments. Organic matter content of soils was measured in 1, 3, 7, 14, and 30 days intervals under the laboratory conditions with 74±5% relative humidity at 28±1°C. Initial water repellency of soil samples was measured as the wetting rates using the water drop penetration time (WDPT) test. Initial water repellency increased with increasing SOM content showing higher increasing rate for hydrophobic CE amended samples compared with those amended with CM and GM. The relation between water repellency and SOM content was considered to be governed by the original hydrophobicities of added manures. The SOM contents of all the soil samples decreased with the time to reach almost steady level at about 30 d. The initial SOM depletion rates were negatively related with the initial water repellency. However, all the CE amended samples initially showed prominent low SOM depletion rates, which were not significantly differed with the amended manure content or the difference in initial water repellency. It is explicable that the original hydrophobicity of the manure as well has a potentially important effect on initiation of SOM decomposition. In contrast, the overall SOM depletion rate can be attributed to the initial water repellency of the manure amended sample, however, not to the original hydrophobicity of the amended manure. Hydrophobic protection may prevent rapid microbial decomposition of SOM and it is conceivable that hydrophobic substances in appropriate composition may reduce organic matter mineralization in soil. These results suggest the contribution of hydrophobic organic substances in bioresistance of SOM and their long-term accumulation in soils


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


Author(s):  
David Worth

Over the past 30 years in Western Australia (WA), there has been heated debate about the future use of the remaining karri and jarrah forests in the south-west of the State. This debate revolves around policy proposals from two social movements: one wants to preserve as much of the remaining old-growth forests as possible, and an opposing movement supports a continued


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


2003 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
R. S. Watkins

IN 1908, Ron's grandfather, Issac Gray, took up an uncleared block of land 15 km north of Frankland in the south-west of Western Australia (see Fig. 1, Hobbs 2003). During that time he ran a few cattle in the bush and clearing of the native woodlands of Wandoo (white gum) Eucalyptus wandoo, J arrah E. marginata and Marri (Redgum) E. calophylla was slow and tedious. Ron's parents took over the farm in 1947, and with the advent of the bulldozer, clearing of Watkin's property and surrounding district began in earnest during the 1950s. Clearing continued as fast "as money permitted", until almost the last natural vegetation was knocked down in 1978 (Fig. 1). Annual pastures with some cropping (for supplementary feed) were the main source of fodder for sheep and cattle.


Sign in / Sign up

Export Citation Format

Share Document