Reduced leaching of nitrate, ammonium, and phosphorus in a sandy soil by fly ash amendment

Soil Research ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1201 ◽  
Author(s):  
S. M. Pathan ◽  
L. A. G. Aylmore ◽  
T. D. Colmer

Low ionic sorption capacities and high hydraulic conductivities of sandy soils contribute to the potential for leaching of nutrients applied to these soils. Batch sorption experiments were used to examine NO3–, NH4+, and P sorption/desorption isotherms for Karrakatta sand and Kwinana fly ash. Column experiments assessed leaching of these nutrients from this sandy soil, when amended with 4 rates (0, 5, 10, and 20%, wt/wt) of fly ash. The sorption of NO3–, NH4+, and P was higher for fly ash than the sandy soil. Phosphorus sorption was greatest for unweathered fly ash, followed by weathered fly ash and then the soil; for example, sorption from a solution containing 20 mg/L P was 90%, 28%, and 14%, respectively. Desorption of P was much slower in the unweathered fly ash than weathered fly ash or the soil. Leachates collected from columns containing fly ash amended soil (5, 10, and 20%, wt/wt) generally had lower concentrations of NO3– and NH4+ than leachates from non-amended soil. Prior to adding fertiliser, the concentration of P was greater in leachate from fly ash amended soil than from the native soil, due to fly ash (weathered) itself containing 92.5 mg/kg of extractable P. However, from day 35 onwards, the concentration of P was lower in leachates from soil amended with 10% or 20% fly ash than from non-amended soil. Thus, fly ash amendment retarded NO3–, NH4+, and P leaching in the sandy soil and may therefore be a useful tool for improvement of nutrient management in sandy soils.

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Guodong Liu ◽  
Monica Ozores-Hampton ◽  
Gene McAvoy ◽  
Ben Hogue ◽  
Crystal A. Snodgrass

Water-repellent soils are unable to effectively adsorb or retain water. On these soils, water may simply pool on the surface or may move down preferred pathways, leaving large amounts of soil dry even when a large volume of water is applied. Thus, managing water and nutrients in sandy soils is often challenging. This 6-page fact sheet provides an overview of surfactants and how they may be used to better manage water and nutrients in sandy soils for vegetable and fruit production. Written by Guodong Liu, Monica Ozores-Hampton, Gene McAvoy, Ben Hogue, and Crystal A. Snodgrass, and published by the UF Department of Horticultural Sciences, December 2013. http://edis.ifas.ufl.edu/hs1230


2018 ◽  
Vol 61 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Jasmeet Lamba ◽  
Puneet Srivastava ◽  
Subhasis Mitra ◽  
Thomas R. Way

Abstract. Excessive delivery of phosphorus (P) from agricultural landscapes to surface waters results in water quality impairment. The method of application of broiler litter to agricultural fields significantly affects P loss to surface waters via surface and subsurface flow pathways from agricultural landscapes. Subsurface-band application of broiler litter can help reduce P loss in surface and subsurface flows. Typically, leachate samples are collected using lysimeters or subsurface flows are sampled to assess the effectiveness of subsurface-band application of broiler litter in limiting P mobility. In this study, we tested a simple and inexpensive method of assessing effectiveness of subsurface-band application of broiler litter using ortho-P (PO4-P) measurements in soils. This method of measuring PO4-P concentration in soils showed that subsurface-band application of broiler litter helps to reduce P leaching, whereas surface application of broiler litter was not effective in reducing P leaching. The results of this study show that soil PO4-P measurements can be successfully used to assess the effectiveness of subsurface-band application of broiler litter in reducing P leaching. Keywords: Leachate, Manure, Nutrient management, Phosphorus, Surface runoff, Water quality.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 676 ◽  
Author(s):  
L. L. Burkitt ◽  
P. W. G. Sale ◽  
C. J. P. Gourley

Soil phosphorus (P) sorption is an important and relatively stable soil property which dictates the equilibrium between sorbed and solution P. Soil P sorption measures are commonly adjusted for the effect of current P fertility on the amount of P a soil sorbs. In the case of highly fertilised agricultural soils, however, this adjustment is likely to be inappropriate as it may mask changes in a soil’s capacity to sorb P, which could affect future P fertiliser applications. A study was undertaken to compare adjusted or unadjusted methods of measuring P sorption using 9 pasture soils sampled from southern Victoria which had previously received P fertiliser and lime. The P sorption assessment methods included: P sorption isotherms, P-buffering capacity (PBC) measures (slope between equilibrium P concentration of 0.25 and 0.35 mg P/L), and single-point P-buffering indices (PBI), with methods either adjusted or unadjusted for current P fertility. A single application of 280 kg P/ha, 6 months before sampling, resulted in a general negative displacement of unadjusted P sorption isotherm curves, indicating reduced P sorption on 8 of the 9 soils. Adding the Colwell extractable P concentration to the amount of P sorbed before calculating the slope (PBC+ColP), tended to negate this fertiliser effect and, in 2 of the 9 soils, resulted in a significant increase in PBC+ColP values. Increasing rates of P fertiliser application (up to 280 kg P/ha) resulted in a consistent trend to decreasing PBI values (unadjusted for Colwell P), which was significant at 4 of the 9 sites after 6 months. However, only minimal changes in PBI values were determined when PBI was adjusted for current P fertility (PBI+ColP). Phosphorus sorption properties appeared reasonably stable over time, although 2 soils, both Ferrosols, indicated significant linear increases in PBI values when these sites remained unfertilised for 30 months. Lime significantly increased both PBI and PBI+ColP values at all sites 6 months after application, but the effect generally diminished after 30 months, suggesting PBI measurements should not be taken immediately after liming. These results demonstrate that unadjusted measures of P sorption are more likely to accurately reflect changes in soil P sorption capacity following P fertiliser applications and suggest that the unadjusted PBI be used in commercial soil testing rather that the currently adjusted PBI+ColP.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Tanabhat-Sakorn Sukitprapanon ◽  
Metawee Jantamenchai ◽  
Duangsamorn Tulaphitak ◽  
Nattaporn Prakongkep ◽  
Robert John Gilkes ◽  
...  

Understanding phosphorus (P) dynamics in tropical sandy soil treated with organic residues of contrasting quality is crucial for P management using organic amendments. This research determined P fractions in a tropical sandy soil under the application of organic residues of different quality, including groundnut stover (GN), tamarind leaf litter (TM), dipterocarp leaf litter (DP), and rice straw (RS). The organic residues were applied at the rate of 10 t DM ha−1 year−1. The P fractions were examined by a sequential extraction procedure. Organic residue application, regardless of residue quality, resulted in P accumulation in soils. For unamended soil, 55% of total P was mainly associated with Al (hydr)oxides. Organic residue application, regardless of residue quality, diminished the NH4F-extractable P (Al-P) fraction, but it had a nonsignificant effect on NaOH-extractable P (Fe-P). The majority of Al-P and Fe-P fractions were associated with crystalline Al and Fe (hydr)oxides. NH4Cl-extractable P (labile P), NaHCO3-extractable P (exchangeable P and mineralizable organic P), HCl-extractable P (Ca-P), and residual P fractions in soil were significantly increased as a result of the incorporation of organic residues. The application of organic residues, particularly those high in ash alkalinity, increase soil pH, labile P, and Ca-P fractions. In contrast, applications of residues high in lignin and polyphenols increase residual P fraction, which is associated with organo-mineral complexes and clay mineral kaolinite.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 407
Author(s):  
Ling Li ◽  
Yong-Jiang Zhang ◽  
Abigayl Novak ◽  
Yingchao Yang ◽  
Jinwu Wang

In recent years, plants in sandy soils have been impacted by increased climate variability due to weak water holding and temperature buffering capacities of the parent material. The projected impact spreads all over the world, including New England, USA. Many regions of the world may experience an increase in frequency and severity of drought, which can be attributed to an increased variability in precipitation and enhanced water loss due to warming. The overall benefits of biochar in environmental management have been extensively investigated. This review aims to discuss the water holding capacity of biochar from the points of view of fluid mechanics and propose several prioritized future research topics. To understand the impacts of biochar on sandy soils in-depth, sandy soil properties (surface area, pore size, water properties, and characteristics) and how biochar could improve the soil quality as well as plant growth, development, and yield are reviewed. Incorporating biochar into sandy soils could result in a net increase in the surface area, a stronger hydrophobicity at a lower temperature, and an increase in the micropores to maximize gap spaces. The capability of biochar in reducing fertilizer drainage through increasing water retention can improve crop productivity and reduce the nutrient leaching rate in agricultural practices. To advance research in biochar products and address the impacts of increasing climate variability, future research may focus on the role of biochar in enhancing soil water retention, plant water use efficiency, crop resistance to drought, and crop productivity.


1994 ◽  
Vol 72 (1-4) ◽  
pp. 285-295 ◽  
Author(s):  
G. S. Ghuman ◽  
M. P. Menon ◽  
K. Chandra ◽  
J. James ◽  
D. C. Adriano ◽  
...  
Keyword(s):  
Fly Ash ◽  

2020 ◽  
Vol 11 (2) ◽  
pp. 19-27
Author(s):  
A. V Zakharov ◽  
S. E Makhover

Today the issue of energy saving is acute. The main sources of energy are radiant energy of the Sun, wind energy, energy of moving water. Therefore, the issue of solving alternative energy sources is relevant. The article aims to solve the problem by using low-potential heat of the soil mass by means of energy-efficient building constructions - foundations. It is necessary to know the thermal characteristics of soils for this. At the moment, methods for determining the thermophysical properties of inert materials with subsequent practical application in the field of construction have been widely studied, but no one of these methods takes into account the grain-size composition. Thus, the study of the connection between the thermal conductivity and the grain-size composition of the soil is important. The aim of the work is to Estimation of thermal conductivity of sandy soils based on grain-size composition. This article presents an analysis of the dependence of the thermal conductivity of the sandy soil of its grain-size composition. The matrix of experiment planning is made; the methodology and technological sequence of the experiment were tested. Statistical processing of the obtained experimental data was carried out. Based on a series of test experiments, it was concluded that there are two factors competing in its thermal conductivity: an increase in λ due to an increase in the degree of pore filling and a decrease in total heat conductivity due to a decrease in the degree of pore filling. These results suggest that grain-size composition has an impact on the thermal conductivity of the sandy soil. During the experiment, the dependence of the thermal conductivity of sandy soils on their grain-size composition was experimentally established.


Sign in / Sign up

Export Citation Format

Share Document