Short-term effects of three animal manures on soil pH and Al solubility

Soil Research ◽  
2006 ◽  
Vol 44 (5) ◽  
pp. 515 ◽  
Author(s):  
F. X. Naramabuye ◽  
R. J. Haynes

A short-term (3-day) equilibration experiment was carried out to determine the effects of 3 animal manures (poultry, pig, and cattle) added at a rate of 20 mg/g to an Oxisol on pH and the concentrations of total (AlT) and monomeric (AlMono) Al in solution. The pH of equilibrium solutions from the control, cattle, pig, and poultry manure treatments were 4.0, 4.6, 5.2, and 6.3, respectively. AlMono concentrations decreased progressively as pH increased but concentrations of AlT were similar in the pig and poultry manure treatments. Subsequent equilibration experiments examined the solubility of AlMono and AlT when the 3 manures were added to the Oxisol or a 40 um AlCl3 solution and pH was maintained at 4.0, 4.5, 5.0, 5.5, 6.0, and 6.5. In both experiments, addition of manures generally tended to reduce the concentration of AlT in the lower pH range (4.0 and 4.5) but increase it in the higher range (pH 5.5 or 6.0 and above). Concentrations of AlMono, and the proportion of AlT present as AlMono, were reduced over the whole pH range. Results were explained in terms of the strong bonding ability of organic matter in both the solid and solution phases for Al. At lower pH, where Al is highly soluble, complexation by solid-phase organic matter results in a reduction in both AlT and AlMono. However, at higher pH, where Al solubility becomes limited, complexation of Al by soluble organic matter becomes an important mechanism and this results in an elevation in AlT, while concentrations of AlMono remain very low. It was concluded that the effects of manures in reducing concentrations of AlMono in soil solution are attributable to both an increase in pH and the complexing ability of organic matter for Al.

Soil Research ◽  
2009 ◽  
Vol 47 (7) ◽  
pp. 707 ◽  
Author(s):  
F. C. B. Vieira ◽  
C. Bayer ◽  
J. Zanatta ◽  
P. R. Ernani

Nitrogen-fixing crops and N fertilisation increase soil acidification, but few studies have attempted to evaluate the capacity of soil organic matter to alleviate the Al toxicity in acid no-tilled soils. This study was carried out in a 21-year-old experiment aiming to evaluate the effect of crop systems [fallow/maize (Zea mays L.), F/M; oat (Avena strigosa Schreb)/maize, O/M; oat + vetch (Vigna sativa L.)/maize, O+V/M; lablab (Dolichos lablab) + maize, L+M; and pigeon pea (Cajanus cajan L. Millsp.) + maize, P+M] and mineral N fertilisation (0 and 149 kg/ha.year) on chemical attributes and Al speciation in the 0–0.05 and 0.05–0.10 m layers of a no-tilled Paleudult of Southern Brazil. The original soil pH (5.8) decreased in all crop systems, declining 0.37–1.52 units in 21 years without re-liming. This decrease was larger in subsoil layers and, in general, was exacerbated by legume-based crop systems and by N fertilisation. The drop in soil pH increased Al content in solid phase (range 0.07–1.85 cmolc/kg) and in soil solution (range 0.01–0.06 mmol/L), and decreased base saturation on cation exchange capacity (range 12.5–61.2%). However, the Al3+ activity in the soil solution (1.03×10−7–9.3×10−8) was kept below threshold values of toxicity to maize roots, primarily due to the formation of organometallic complexes at low pH, which was estimated as up to 90% of the total Al in solution, but also due to the increased ionic strength in this no-till soil (0.0026–0.0104). Our results highlight that, although legume cover crops and N fertilisation can accelerate soil acidification, Al toxicity is offset by increased organic matter in no-till subtropical soils.


Agro-Science ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 22-26
Author(s):  
A.I. Afangide ◽  
N.H. Okoli ◽  
M.A. Okon ◽  
N.T. Egboka ◽  
P. Inyang

Application of animal manures for soil amendment plays a major role in the improvement of soil properties and enzymatic activities of a degraded Ultisol. This study assessed the effects of poultry manure (PM) and swine manure (SM) on the activities of catalase and urease enzymes and some soil properties. The PM and SM were applied at the rate of 30 t ha–1 each on experimental plots arranged in a randomized complete block design with three replicates. Soil samples were collected at day 0, 14, 28, 42, 56, 70 and 84 from 0-15 and 15-30 cm depths and analyzed for catalase and urease enzymes and some soil properties using standard procedures. The results showed increase in soil pH (in H2O) from 4.0 to 5.4 following manure application. At 0-15 cm soil depth, PM and SM recorded 28.1 and 28.8% increases in soil pH (in H2O), respectively. Soil organic carbon was highest (2.6 g kg–1) at 0-15 cm depth for soil amended with SM while the lowest value of 1.1 g kg–1was obtained at 15-30 cm depth for soil unamended with SM. In PM-amended soil, catalase activities ranged from 1.32 to 6.77 mg g–1 while its activities in SM-treated soil significantly (p < 0.05) varied between 1.55 and 8.11 mg g–1. Urease showed ranges of 0.72-3.90 mg g–1 and 0.96-4.71 mg g–1 in PM-amended and SM-treated soils, respectively. The results uphold that animal manures improve soil properties and are enzymatically controlled.


Weed Science ◽  
1992 ◽  
Vol 40 (3) ◽  
pp. 490-496 ◽  
Author(s):  
Mark M. Loux ◽  
Kirk D. Reese

Laboratory and field studies were conducted in 1988 through 1990 to determine the effect of soil pH on imazaquin adsorption and persistence in a Crosby silt loam (1.6% organic matter) and a Hoytville clay (3.3% organic matter). Above a pH of 6, 6 to 7% of the total imazaquin present was adsorbed to both soils. Adsorption increased as pH decreased from about 7 to 4.5, with a maximum of 16.5 and 31% adsorbed on Crosby and Hoytville soils, respectively. Imazaquin was more persistent in the Hoytville clay than in the Crosby silt loam. Herbicide dissipated more slowly in both soils in 1988 than in 1989 due to dry soil conditions immediately prior to and following herbicide application in 1988. In both soils, imazaquin persistence increased as soil pH decreased, over a pH range from 6.5 to 4.5. Increased persistence with decreasing pH was attributed in part to increased adsorption and decreased availability for microbial degradation.


2017 ◽  
Vol 155 (7) ◽  
pp. 1023-1032 ◽  
Author(s):  
R. PADBHUSHAN ◽  
D. KUMAR

SUMMARYKnowledge of different fractions and availability of boron (B) is essential while studying the response of crops to B. Fractionation provides information about the chemistry of B and quantifies its bioavailability. Such information is potentially valuable for predicting bioavailability, B leaching, dynamics, transformation between chemical forms in soils and environmental impacts. Total B (T-B) is quantified into five fractions: readily soluble (Rs-B), specifically adsorbed (Spa-B), oxide bound (Ox-B), organically bound (Org-B) and residual B (Res-B). Of these, Rs-B is the fraction present in soil solution and adsorbed weakly by soil particles, and is most readily available for plant uptake. It accounts for 1–2% of T-B. The second most plant available form is Spa-B; it may be adsorbed onto clay surfaces or associated with organic matter (OM) in soil. The remaining fractions, Ox-B, Org-B and Res-B, are unavailable for plant uptake. The major portion (generally 87·4–99·7%) of T-B is composed of Res-B. Overall, the relative proportion of B in various fractions is in the order of Res B > Org-B > Spa-B > Rs-B > Ox-B. Several factors such as soil pH, soil OM, clay minerals, iron and aluminium oxides and calcium carbonate content may change the relative proportion of B in various fractions and the transformations among different soil B fractions. Some of the B fractions are correlated with others and exhibit responses in terms of plant growth. Non-specifically adsorbed (Nsa-B) and Spa-B are positively and significantly correlated to some sub-fractions of Ox-B, such as B occluded in manganese oxyhydroxides (Moh-B). The most readily available forms of B for plants are Nsa-B, Spa-B and Moh-B.


1986 ◽  
Vol 66 (4) ◽  
pp. 763-765 ◽  
Author(s):  
STANFORD L. TACKETT ◽  
ELLEN R. WINTERS ◽  
MICHAEL J. PUZ

The relative short-term leaching rates of the metals Cd, Cu, Fe, Pb and Zn from composted sewage sludge was determined over the pH range of 2.5–7.0 at 0.5 pH unit intervals. Only Zn and Cd leached significantly faster as the pH was lowered, with both showing the greatest solubility increase over the pH range of 5.5–6.0. Key words: Metal leaching, heavy metals, sewage sludge, soil pH


2021 ◽  
Author(s):  
Sonia Afsana ◽  
Yuzo Miyazaki ◽  
Eri Tachibana ◽  
Dhananjay Kumar Deshmukh ◽  
Kimitaka Kawamura ◽  
...  

&lt;p&gt;Organic aerosol (OA), a major component of atmospheric aerosol, is considered to be one of the key players in atmospheric radiative balance and climate change. Chromophoric OA, termed as brown carbon (BrC), is a component that can absorb solar radiation in the ultraviolet and short-wavelength visible regions and is composed of a wide range of poorly characterized compounds. Whereas light absorption properties were analyzed to characterize chromophoric OA, fluorescent properties also provide information on them. In this study, the fluorescence property of solvent extractable organics in submicron aerosol particles collected in a forest in the cool-temperate zone of northern Japan, was characterized.&lt;/p&gt;&lt;p&gt;Aerosol samples were collected on quartz filters (cut-off diameter: &amp;#8804;0.95 micrometer) in Tomakomai Experimental Forest of Hokkaido University. Organic aerosol components in the samples were extracted and fractionated on the basis of their polarity by the combination of solvent extraction and solid-phase extraction methods. Water-soluble organic matter (WSOM) and water-insoluble organic matter (WISOM) were extracted sequentially by using multiple solvents. Two fractions, humic-like substance (HULIS) and highly-polar water-soluble organic matter (HP-WSOM), were fractionated from WSOM by solid phase extraction. The excitation&amp;#8722;emission matrices (EEMs) were measured using a fluorescence spectrometer, and the fluorescence property of the extracts was characterized by the classification of EEM profiles using a Parallel Factor (PARAFAC) model.&lt;/p&gt;&lt;p&gt;From the PARAFAC analysis, five types of fluorescent components were identified for each of WSOM and WISOM fractions. A fluorescence component with the characteristics reported to be associated with (HULIS) accounted for large fractions of the fluorescence from WSOM and WISOM (mean: 68% and 84%, respectively). The relative contribution of the fluorescent components for WSOM shows a clear seasonal variation of the characteristics of WSOM. Furthermore, from each of HULIS and HP-WSOM fractions, five types of fluorescent components were identified. Fluorescence components with the characteristics of protein-like compounds identified in previous EEM studies accounted for a large fraction of the fluorescence from HP-WSOM (mean: 53%), whereas the contribution of protein-like compounds was smaller in the case of the HULIS fraction (mean: 23%).&lt;/p&gt;


Soil Research ◽  
1995 ◽  
Vol 33 (4) ◽  
pp. 611 ◽  
Author(s):  
HKJ Powell ◽  
DJ Hawke

Measurement of soil solution Al complexation capacity (Al-CC) at pH 4 . 7 by using a simple colorimetric flow injection analysis technique is described. Forest soils from four sites (Canterbury, N.Z.) of contrasting rainfall (from 655 mm to about 3000 mm) were examined. Results showed a strong inverse correlation (r2 = 0.992) between pH and log(soil solution Al-CC) in high-organic surface horizons, indicating that high rainfall generates both acidity and Al complexing ligands. Soil Al-CC (�mol Al kg-1 dry soil) was highest (199 �mol kg-1) in the Ca horizon from the wettest site, and lowest (2.2 � mol kg-1) in the B horizon of one of the intermediate rainfall sites. Soil solution Al-CC was proportional (r2 = 0.94) to the organic matter content of all horizons, as estimated by absorbance at 250 nm. The slope of the regression against A250, expressed as fulvic acid equivalent, gave a higher Al-CC (1360 � 210 mmol kg-1) than measured for soil fulvic acid alone (550 mmol kg-1), indicating a contribution from non-absorbing complexants. The pH dependence of log(free [Al]) (slope -0.38 � 0.17) implicates colloidal and/or solid phase organics in the control of soluble Al in organic horizons.


Sign in / Sign up

Export Citation Format

Share Document