Organic matter kept Al toxicity low in a subtropical no-tillage soil under long-term (21-year) legume-based crop systems and N fertilisation

Soil Research ◽  
2009 ◽  
Vol 47 (7) ◽  
pp. 707 ◽  
Author(s):  
F. C. B. Vieira ◽  
C. Bayer ◽  
J. Zanatta ◽  
P. R. Ernani

Nitrogen-fixing crops and N fertilisation increase soil acidification, but few studies have attempted to evaluate the capacity of soil organic matter to alleviate the Al toxicity in acid no-tilled soils. This study was carried out in a 21-year-old experiment aiming to evaluate the effect of crop systems [fallow/maize (Zea mays L.), F/M; oat (Avena strigosa Schreb)/maize, O/M; oat + vetch (Vigna sativa L.)/maize, O+V/M; lablab (Dolichos lablab) + maize, L+M; and pigeon pea (Cajanus cajan L. Millsp.) + maize, P+M] and mineral N fertilisation (0 and 149 kg/ha.year) on chemical attributes and Al speciation in the 0–0.05 and 0.05–0.10 m layers of a no-tilled Paleudult of Southern Brazil. The original soil pH (5.8) decreased in all crop systems, declining 0.37–1.52 units in 21 years without re-liming. This decrease was larger in subsoil layers and, in general, was exacerbated by legume-based crop systems and by N fertilisation. The drop in soil pH increased Al content in solid phase (range 0.07–1.85 cmolc/kg) and in soil solution (range 0.01–0.06 mmol/L), and decreased base saturation on cation exchange capacity (range 12.5–61.2%). However, the Al3+ activity in the soil solution (1.03×10−7–9.3×10−8) was kept below threshold values of toxicity to maize roots, primarily due to the formation of organometallic complexes at low pH, which was estimated as up to 90% of the total Al in solution, but also due to the increased ionic strength in this no-till soil (0.0026–0.0104). Our results highlight that, although legume cover crops and N fertilisation can accelerate soil acidification, Al toxicity is offset by increased organic matter in no-till subtropical soils.

Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 17 ◽  
Author(s):  
F. C. B. Vieira ◽  
C. Bayer ◽  
J. Mielniczuk ◽  
J. Zanatta ◽  
C. A. Bissani

Cropping systems and N fertilisation affect soil acidification mainly due to the removal of alkaline plant material from the field and nitrate leaching. The study evaluated the acidification of a subtropical soil under no till cropping systems with different C and N addition rates for 19 years. The contributions of leguminous and non-leguminous crops (fallow/maize, black oat/maize, black oat + vetch/maize, black oat + vetch/maize + cowpea, lablab + maize, pigeon pea + maize, and digitaria) and mineral N fertiliser (0 and 180 kg N/ha.year as urea) to total acidification were estimated. Cropping systems and N fertilisation significantly affected soil pH, which ranged from 4.3 to 5.1. The presence of leguminous species and mineral N promoted greater decreases in soil pH and net soil acidification, which resulted in increases in exchangeable Al content and Al saturation. Black oat + vetch/maize with N fertilisation promoted the highest soil net acidification rate (2.65 kmol H+/ha.year), while digitaria had the lowest (1.07 kmol H+/ha.year). Leguminous species and N fertilisation increased soil acidification through changes in the C cycle associated with the removal of alkaline plant material by grains. Leguminous-based cropping systems promoted higher maize yields than those comprising essentially gramineous species, indicating an opportunity for a reduction in N fertiliser rates. With N application, however, maize yield did not differ among cropping systems, despite differences in soil pH and exchangeable Al.


Soil Research ◽  
2006 ◽  
Vol 44 (5) ◽  
pp. 515 ◽  
Author(s):  
F. X. Naramabuye ◽  
R. J. Haynes

A short-term (3-day) equilibration experiment was carried out to determine the effects of 3 animal manures (poultry, pig, and cattle) added at a rate of 20 mg/g to an Oxisol on pH and the concentrations of total (AlT) and monomeric (AlMono) Al in solution. The pH of equilibrium solutions from the control, cattle, pig, and poultry manure treatments were 4.0, 4.6, 5.2, and 6.3, respectively. AlMono concentrations decreased progressively as pH increased but concentrations of AlT were similar in the pig and poultry manure treatments. Subsequent equilibration experiments examined the solubility of AlMono and AlT when the 3 manures were added to the Oxisol or a 40 um AlCl3 solution and pH was maintained at 4.0, 4.5, 5.0, 5.5, 6.0, and 6.5. In both experiments, addition of manures generally tended to reduce the concentration of AlT in the lower pH range (4.0 and 4.5) but increase it in the higher range (pH 5.5 or 6.0 and above). Concentrations of AlMono, and the proportion of AlT present as AlMono, were reduced over the whole pH range. Results were explained in terms of the strong bonding ability of organic matter in both the solid and solution phases for Al. At lower pH, where Al is highly soluble, complexation by solid-phase organic matter results in a reduction in both AlT and AlMono. However, at higher pH, where Al solubility becomes limited, complexation of Al by soluble organic matter becomes an important mechanism and this results in an elevation in AlT, while concentrations of AlMono remain very low. It was concluded that the effects of manures in reducing concentrations of AlMono in soil solution are attributable to both an increase in pH and the complexing ability of organic matter for Al.


2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


1988 ◽  
Vol 39 (3) ◽  
pp. 319 ◽  
Author(s):  
RC Bruce ◽  
LA Warrell ◽  
DG Edwards ◽  
LC Bell

In the course of three experiments, soybean (Glycerine max (L.) Merr.) cv. Forrest was grown in 21 soils (four surface soils and 17 subsoils) amended with liming materials (CaCO3 and Mg CO3) and soluble Ca salts (CaSO4.2H20 and CaCl2.2H2O). In most soils, the soluble salts increased concentrations and activities of Al species in solution to levels that restricted root growth, and MgCO3, induced a Ca limitation to root growth. Root lengths after three days were related to so11 and soil solution attributes.Suitable diagnostic indices for the prediction of Ca limitations to root growth were either Ca saturation of the effective cation exchange capacity or Ca activity ratio of the soil solution, which was defined as the ratio of the activity of Ca to the sum of the activities of Ca, Mg, Na, and K. Values corresponding to 90% relative root length (RRL) of soybean were 0.05 for the Ca activity ratio and 11% for Ca saturation. Calcium activity and Ca concentration in the soil solution and exchangeable Ca were less useful for this purpose.Soil Al saturation was not a good predictor of Al toxicity, but soil solution measurements were. The activities of Al3+ and AlOH2+ gave the best associations with RRL, and values corresponding to 90% RRL were 4 8M and 0.5 8M respectively. The results suggested that Al(OH)3� , Al(OH)2+, and AlSO4+, were not toxic species. Soil solution pH and soil pH measured in water were more sensitive indicators of root growth than soil pH measured in 0.01 M CaCl2.Using a Ca activity ratio of 0.05 and an Al3+ activity of 4 8M as diagnostic indices, none of the 20 soils in two experiments were toxic in Al, while 13 (all subsoils) were deficient in Ca. Thus the first limitation on root growth was Ca deficiency and not Al toxicity, in spite of high Al saturations and relatively low pH in these soils. However, Al toxicity could be induced by increasing the ionic strengths of soil solutions.


HortScience ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Emily R. Vollmer ◽  
Nancy Creamer ◽  
Chris Reberg-Horton ◽  
Greg Hoyt

Cover crops of foxtail millet ‘German Strain R’ [Setaria italica (L.) Beauv.] and cowpea ‘Iron & Clay’ [Vigna unguiculata (L.) Walp.] were grown as monocrops (MIL, COW) and mixtures and compared with a bare ground control (BG) for weed suppression and nitrogen (N) contribution when followed by organically managed no-till bulb onion (Allium cepa L.) production. Experiments in 2006–2007 and 2007–2008 were each conducted on first-year transitional land. Mixtures consisted of cowpea with high, middle, and low seeding rates of millet (MIX-70, MIX-50, MIX-30). During onion production, each cover crop treatment had three N rate subplots (0, 105, and 210 kg N/ha) of surface-applied soybean meal [Glycine max (L.) Merrill]. Cover crop treatments COW and BG had the greatest total marketable onion yield both years. Where supplemental baled millet was applied in 2006–2007, onion mortality was over 50% in MIL and MIX and was attributed to the thickness of the millet mulch. Nitrogen rates of 105 and 210 kg N/ha increased soil mineral N (NO3– and NH4+) on BG plots 2 weeks after surface application of soybean meal each year, but stopped having an effect on soil mineral N by February or March. Split applications of soybean meal could be an important improvement in N management to better meet increased demand for N uptake during bulb initiation and growth in the spring.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 903
Author(s):  
Karin Kauer ◽  
Sandra Pärnpuu ◽  
Liina Talgre ◽  
Viacheslav Eremeev ◽  
Anne Luik

This study aimed to investigate the soil organic carbon (SOC) sequestration rate and soil organic matter (SOM) composition in conventional rotational cropping with mineral fertilization compared with organic cover cropping with and without composted manure addition during 2008–2018 to specify the SOM stabilization under different farming systems. The SOC proportion in particulate organic matter (POM) (63–2000 µm) and mineral-associated organic matter (MAOM) (<63 µm) fractions were estimated in different treatments, and the SOM composition in the fractions was characterized by FTIR spectroscopy. The SOC sequestration rate was treatment-dependent, with the higher SOC sequestration rate (1.26 Mg ha−1 y−1) in the organic treatment with cover crop and composted manure. Across all treatments, 57.3%–77.8% of the SOC stock was in the MAOM fraction. Mineral N fertilization increased POM-C concentration by 19%–52% compared with the unfertilized control. Under the organic treatments, the POM-C concentration was 83%–95% higher than the control. The MAOM-C concentration increased by 8%–20%. The mineral N fertilization and organic treatments (with and without cover crops and composted manure) increased the SOC stock proportion of POM. The highest proportion of SOC stock related to POM was in the cover cropping system, reducing the proportion of C related to the MAOM fraction, but the addition of composted manure with cover cropping also increased the proportion of C in MAOM. Compared with MAOM, the POM had a less resistant organic matter composition, and the POM resistance was higher in organic than conventional treatments. In general, the recalcitrance of SOM increased with SOC concentration. The POM fraction had higher aromaticity (or degree of decomposition) than the MAOM fraction. The aromaticity in POM and MAOM fractions was higher in the organic farming system and depended on mineral N fertilization and cover cropping, but the effect of manure was not significant. Although the SOC sequestration rate was higher under manure addition, resulting in the highest formation of both POM and MAOM in the soil, manure addition had little effect on overall SOM composition compared with cover crops.


2017 ◽  
Vol 155 (7) ◽  
pp. 1023-1032 ◽  
Author(s):  
R. PADBHUSHAN ◽  
D. KUMAR

SUMMARYKnowledge of different fractions and availability of boron (B) is essential while studying the response of crops to B. Fractionation provides information about the chemistry of B and quantifies its bioavailability. Such information is potentially valuable for predicting bioavailability, B leaching, dynamics, transformation between chemical forms in soils and environmental impacts. Total B (T-B) is quantified into five fractions: readily soluble (Rs-B), specifically adsorbed (Spa-B), oxide bound (Ox-B), organically bound (Org-B) and residual B (Res-B). Of these, Rs-B is the fraction present in soil solution and adsorbed weakly by soil particles, and is most readily available for plant uptake. It accounts for 1–2% of T-B. The second most plant available form is Spa-B; it may be adsorbed onto clay surfaces or associated with organic matter (OM) in soil. The remaining fractions, Ox-B, Org-B and Res-B, are unavailable for plant uptake. The major portion (generally 87·4–99·7%) of T-B is composed of Res-B. Overall, the relative proportion of B in various fractions is in the order of Res B > Org-B > Spa-B > Rs-B > Ox-B. Several factors such as soil pH, soil OM, clay minerals, iron and aluminium oxides and calcium carbonate content may change the relative proportion of B in various fractions and the transformations among different soil B fractions. Some of the B fractions are correlated with others and exhibit responses in terms of plant growth. Non-specifically adsorbed (Nsa-B) and Spa-B are positively and significantly correlated to some sub-fractions of Ox-B, such as B occluded in manganese oxyhydroxides (Moh-B). The most readily available forms of B for plants are Nsa-B, Spa-B and Moh-B.


2012 ◽  
Vol 9 (9) ◽  
pp. 12433-12467 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the Stråsan experimental forest (Norway spruce) in Central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity, but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n=6) and tension lysimeters were installed in the underlying B horizon (n=4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B-horizon leachates, the N1 treatment approximately doubled leachate concentration of DOC and DON. DON returned to control levels but DOC remained elevated in B-horizon leachates in N2 plots 19 yr after termination of N addition. Increased aromaticity of the sampled DOM in mineral B horizon in both the ongoing and terminated N treatment indicated that old SOM in the mineral soil was a source of the increased DOC.


Sign in / Sign up

Export Citation Format

Share Document