Nutrient leaching and changes in soil characteristics of four contrasting soils irrigated with secondary-treated municipal wastewater for four years

Soil Research ◽  
2006 ◽  
Vol 44 (2) ◽  
pp. 107 ◽  
Author(s):  
G. P. Sparling ◽  
L. Barton ◽  
L. Duncan ◽  
A. McGill ◽  
T. W. Speir ◽  
...  

Land treatment is the preferred option for the disposal of wastewater in New Zealand. We applied secondary-treated municipal wastewater to 4 contrasting soils (a Gley, Pumice, Recent, and Allophanic Soil) at the rate of 50 mm per week, for 4 years. Amounts of N and P in applied wastewater, leachates, and removed in herbage were measured every 1–4 weeks, and a range of soil chemical, biochemical and physical characteristics measured by destructive sampling after 2 and 4 years. After 4 years, leaching losses amounted to 290–307 kg N on the Gley and Recent Soils, representing approximately 22% of the N applied. Leaching losses from the Allophanic and Pumice Soils were 44 and 69 kg N/ha, respectively, representing <5% of that applied. More than half of the N leached was in organic forms. Leaching losses of P were <5 kg P/ha on the Pumice and Allophanic Soils (< 1% of that applied), 41 kg P/ha from the Recent Soil and 65 kg P/ha from the Gley Soil (8% and 13% of that applied, respectively). After 4 years, the total C and microbial C content in the A horizon of the irrigated Recent Soil were, respectively, 47% and 44% less than non-irrigated cores. All irrigated soils showed a rise in pH of up to 1 unit, and all had a marked increase in the exchangeable Na+ which reached 4–22% ESP. After 4 years, the saturated and near saturated hydraulic conductivity of the Gley Soil had declined from 567 and 40 mm/h to 56 and 3 mm/h, respectively. Allophanic and Pumice Soils are to be preferred over the Recent and Gley Soils for effective treatment of wastewater and to minimise the loss of nutrients to the wider environment.

2007 ◽  
Vol 44 (4) ◽  
pp. 633-640 ◽  
Author(s):  
G. Sparling ◽  
L. A. Schipper ◽  
G. W. Yeates ◽  
J. Aislabie ◽  
M. Vojvodic-Vukovic ◽  
...  

2016 ◽  
Vol 19 (5) ◽  
pp. 490-499 ◽  
Author(s):  
Vinod Kumar ◽  
A. K. Chopra ◽  
Sachin Srivastava ◽  
Jogendra Singh ◽  
Roushan Kumar Thakur

Author(s):  
Cecile De Klein ◽  
Jim Paton ◽  
Stewart Ledgard

Strategic de-stocking in winter is a common management practice on dairy farms in Southland, New Zealand, to protect the soil against pugging damage. This paper examines whether this practice can also be used to reduce nitrate leaching losses. Model analyses and field measurements were used to estimate nitrate leaching losses and pasture production under two strategic de-stocking regimes: 3 months off-farm or 5 months on a feed pad with effluent collected and applied back to the land. The model analyses, based on the results of a long-term farmlet study under conventional grazing and on information for an average New Zealand farm, suggested that the 3- or 5-month de-stocking could reduce nitrate leaching losses by about 20% or 35-50%, respectively compared to a conventional grazing system. Field measurements on the Taieri Plain in Otago support these findings, although the results to date are confounded by drought conditions during the 1998 and 1999 seasons. The average nitrate concentration of the drainage water of a 5-month strategic de-stocking treatment was about 60% lower than under conventional grazing. Pasture production of the 5-month strategic de-stocking regime with effluent return was estimated based on data for apparent N efficiency of excreta patches versus uniformlyspread farm dairy effluent N. The results suggested that a strategic de-stocking regime could increase pasture production by about 2 to 8%. A cost/ benefit analysis of the 5-month de-stocking system using a feed pad, comparing additional capital and operational costs with additional income from a 5% increase in DM production, show a positive return on capital for an average New Zealand dairy farm. This suggests that a strategic destocking system has good potential as a management tool to reduce nitrate leaching losses in nitrate sensitive areas whilst being economically viable, particularly on farms where an effluent application system or a feed pad are already in place. Keywords: dairying, feed pads, nitrate leaching, nitrogen efficiency, productivity, strategic de-stocking


2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


2020 ◽  
Vol 24 ◽  
Author(s):  
Ismael Leonardo Vera-Puerto ◽  
Jorge Leonardo Olave-Vera ◽  
Sussy Tapia ◽  
Wladimir Antonio Chávez ◽  
Carlos Arias

The aim of this work is to evaluate the reuse of municipal wastewaters treated through subsurface constructed wetlands (SS-CWs) as irrigation water in cut flower aeroponic cultivation under arid conditions. For this purpose, two experimental aeroponic cultivation systems were installed with the cut flower Lilium ‘Tresor’ planted and irrigated with SS-CWs treated water. The results showed that the quality of the SS-CWs wastewater has to be improved to be used in irrigation. Despite that, Lilium ‘Tresor’ grew under arid conditions with normal stem diameters and number of flowers but with heights under 0.65 m, which would restrict their commercialization to local markets. Water electrical conductivity (> 2300 µs/cm) and luminosity (> 120 klux) were factors that affected plant height. When compared to other cultivation systems, the aeroponic cultivation system used between 10 % and 20 % of the amount of water needed to produce Lilium ‘Tresor.’ Thus, this work showed the feasibility to produce cut flowers using an aeroponic cultivation system under arid conditions and irrigated with SS-CWs effluents. Likewise, it was detected that improvements to water quality and luminosity must be made for industrial scaling.


1983 ◽  
Vol 5 (5) ◽  
pp. 95
Author(s):  
Carmeli Antonia Cassol ◽  
Ari Zago

The present work shows chemical soil characteristics and growth in plantings of Araucaria angustifolia, implanted in different soil types, in Passo Fundo, RS National Forest.Soils types were classified as Latosol Roxo, Lithosol Eutrophic Soil and Low-Humic Gley. Soil samples were taken randomly at 0 - 20cm deep in 400 m² area square plots. The chemical characteristics of the studied soils were related to growth variables by simple linear correlation.According to the findings, the chemical soil chemical characteristics were not considered adequate parameters to explain the growth variation observed for Araucaria angustifolia.


Sign in / Sign up

Export Citation Format

Share Document