Sources of nitrous oxide from 15N-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD)

Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 76 ◽  
Author(s):  
H. J. Di ◽  
K. C. Cameron

A field lysimeter study was conducted to determine the sources of N2O emitted following the application of dairy cow urine and urea fertiliser labelled with 15N, with and without a nitrification inhibitor, dicyandiamide (DCD). The results show that the application of cow urine at 1000 kg N/ha significantly increased N2O emissions above that from urea applied alone at 25 kg N/ha. The application of urine seemed to have a priming effect, increasing N2O emissions from the soil N pool. Treating the soil with DCD significantly (P < 0.05) decreased N2O emissions from the urine-applied treatment by 72%. The percentage of N2O-N derived from the applied N was 53.1% in the urine-applied treatment and this was reduced to 29.9% when DCD was applied. On average, about 43% of the N2O emitted in the urine-applied treatments was from nitrification. The application of DCD did not have a major effect on the relative contributions of nitrification and denitrification to N2O emissions in the urine treatments. This indicates that the DCD nitrification inhibitor decreased the contributions to N2O emissions from both nitrification and denitrification.

2008 ◽  
Vol 48 (2) ◽  
pp. 156 ◽  
Author(s):  
K. B. Kelly ◽  
F. A. Phillips ◽  
R. Baigent

Animal production systems in Australia are a significant contributor to nitrous oxide (N2O) emissions from soil, with the Australian Greenhouse Gas Inventory attributing ~25% of the N2O emissions from agricultural soils to animal production. Recent studies in New Zealand using dicyandiamide (DCD) in association with the application of urine to pastoral soil have reported reductions in N2O emission of up to 78% and reduced nitrate leaching of up to 45%. As such, the application of DCD to grazed pastures offers potential to reduce emissions resulting directly from animal production. This study was conducted on a border-check irrigated perennial pasture used for dairy production in northern Victoria. Automated enclosure chambers were linked to a fourier transformed infrared spectrometer to determine N2O emissions. The three treatments were a control, dairy cow urine (1000 kg N/ha) and dairy cow urine (1000 kg N/ha) with DCD included (10 kg/ha). The treatments were applied in mid-spring (15 September 2005) and again in mid-summer (25 January 2006) to a new area of pasture with N2O emissions measured for 120 and 70 days, respectively. Soil temperature and soil water content were monitored continuously. Soil inorganic-N was measured (0–100 mm) every 7 to 14 days for up to 120 days. Application of DCD reduced N2O emissions from a urine patch by 47% when applied in mid-spring and 27% when applied in mid-summer. The impact of the application of DCD on emissions from single urine patches lasted for ~50 days in mid-spring and 25 days in mid-summer. These reductions are lower than those reported in New Zealand studies and are likely to be related to soil conditions, principally temperature. The surface application of DCD has potential to reduce emissions from urine patches in northern Victoria; however, the effects are likely to be short-lived given the soil temperatures and high clay content typical of many Australian soils. More research is required to examine emission reduction options that are cost effective for animal production systems.


2016 ◽  
Vol 56 (3) ◽  
pp. 350 ◽  
Author(s):  
J. Luo ◽  
S. Ledgard ◽  
B. Wise ◽  
S. Lindsey

Animal urine deposited on pastoral soils during grazing is recognised as a dominant source of nitrous oxide (N2O) emissions. The nitrification inhibitor, dicyandiamide (DCD), is a potential mitigation technology to control N2O emissions from urine patches on grazed pastures. One delivery option is to include DCD in animal feed so that the DCD is targeted directly in the urine patch when excreted in the animal urine. The hypothesis tested in the present study was that DCD in urine, excreted by cows that were orally administered with DCD, would have the same effect as DCD added to urine after the urine is excreted. The study also aimed to determine the most effective DCD rate for reducing N2O emissions. Fresh dairy cow urine (700 kg N per ha) was applied to a free-draining silt loam pastoral soil in Waikato, New Zealand, in May (late autumn) or July (winter) of 2014, and was mixed with DCD at rates of 0, 10, 30 and 60 kg/ha. In late autumn, there was an equivalent treatment of urine (containing 60 kg DCD per ha) from DCD-treated cows. A static chamber technique was used to determine gaseous N2O emissions. An annual emission factor (EF3; the percentage of applied urine N lost as N2O-N) of 0.23% or 0.21% was found following late-autumn or winter applications of urine without DCD. Late-autumn application of urine containing DCD from oral administration to cows had the same significant reduction effect on N2O emissions as did DCD that was mixed with urine after excretion, at the equivalent DCD application rate of 60 kg/ha. Application of urine with DCD mixed with the urine after excretion at varying DCD rates showed a significant (P < 0.05) linear decrease in both N2O emissions and EF3 values.


Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 547 ◽  
Author(s):  
Terry J. Rose ◽  
Stephen G. Morris ◽  
Peter Quin ◽  
Lee J. Kearney ◽  
Stephen Kimber ◽  
...  

Although there is growing evidence that the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can lower soil nitrous oxide (N2O) emissions in temperate environments, there is little evidence of its efficacy in subtropical or tropical environments where temperatures and rainfall intensities are typically higher. We investigated N2O emissions in field-grown aerobic rice in adjacent fields in the 2013–14 and 2014–15 seasons in a subtropical environment. Crops were topdressed with 80 kg nitrogen (N) ha–1 before rainfall, as either urea, urea + DMPP (at 1.6 kg DMPP t–1 urea: ‘urea-DMPP’) or a blend of 50% urea and 50% urea-DMPP in the 2013–14 season, and urea, urea-DMPP or polymer (3 month)-coated urea (PCU) in the 2014–15 season. DMPP-urea significantly (P < 0.05) lowered soil N2O emissions in the 2013–14 season during the peak flux period after N fertiliser application, but had no effect in 2014–15. The mean cumulative N2O emissions over the entire growing period were 190 g N2O-N ha–1 in 2013–14 and 413 g N2O-N ha–1 in 2014–15, with no significant effect of DMPP or PCU. Our results demonstrate that DMPP can lower N2O emissions in subtropical, aerobic rice during peak flux events following N fertiliser application in some seasons, but inherent variability in climate and soil N2O emissions limited the ability to detect significant differences in cumulative N2O flux over the seasonal assessment. A greater understanding of how environmental and soil factors impact the efficacy of DMPP in the subtropics is needed to formulate appropriate guidelines for its use commercially.


Soil Research ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 145
Author(s):  
Humaira Sultana ◽  
Helen C. Suter ◽  
Roger Armstrong ◽  
Marc E. Nicolas ◽  
Deli Chen

Managing nitrogen (N) supply to better match crop demand and reduce losses will be an important goal under future predicted elevated carbon dioxide (e[CO2]) conditions. This study comprised two Free-Air Carbon dioxide Enrichment (FACE) experiments conducted in southern Australia in 2011. The first experiment (Exp-1) was a field experiment that investigated the impact of a nitrification inhibitor (NI), 3,4-dimethylpyrazole phosphate (DMPP), and supplementary irrigation on utilisation of legume (field pea) residual N by a wheat crop and soil nitrous oxide (N2O) emissions. The second experiment (Exp-2) used 15N techniques in soil cores to investigate the impact of DMPP on recovery of fertiliser N. In Exp-1, grain N concentration increased (by 12%, P < 0.001) with NI application compared with no NI application, irrespective of CO2 concentration ([CO2]) and supplementary irrigation. With NI application the grain N harvest index increased under e[CO2] (82%) compared with a[CO2] (79%). Applying the NI compensated for decreased grain copper concentration observed under e[CO2] conditions. NI had minimal effect on soil N2O emissions in the wheat crop regardless of [CO2]. In Exp-2, 65% (±1 standard error, n = 15) of the applied N fertiliser was recovered in the aboveground plant, irrespective of NI use. The use of a NI in a cereal–legume rotation may help to increase grain N concentration, increase the mobilisation of N towards the grain under e[CO2], and may also help to compensate for decreases in grain copper concentration under e[CO2]. However, use of a NI may not provide additional benefit for productivity or efficiency of N utilisation.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 277-284 ◽  
Author(s):  
Hiroki Itokawa ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Nitrous oxide (N2O) emissions from nitrification-denitrification processes in a full-scale night soil treatment plant were measured, and patterns and control of the N2O production were investigated. Estimated N2O emissions ranged from 4.4 to 1,190 gN/(m3 of influent), corresponding to a conversion ratio of influent nitrogen to N2O-N of 0.24-55%. N2O was produced in the intermittent aeration tank (IAT) where nitrification and denitrification were carried out alternately. The produced N2O was either stripped out to the off-gas or remained in the effluent in dissolved form. The former accounted for more than 99.5% of the total emissions. The latter flowed into the following anoxic tank, where 60-98% of N2O was reduced. A significant difference in the extent of N2O supersaturation in mixed liquor of IAT was observed between the cases of high and low N2O emissions. In IAT, N2O tended to be produced discretely either in aerobic or in anoxic phases. It seemed that the completeness of nitrification and denitrification in IAT, indicated from a mass balance between NH4-N and NO3-N and from NO2-N accumulation in mixed liquor of IAT, was one of the important factors affecting the N2O production. This completeness was decided by the time ratio of aerobic and anoxic phases. External addition of methanol to IAT seemed to reduce N2O emissions.


2011 ◽  
Vol 166-167 ◽  
pp. 480-491 ◽  
Author(s):  
C.A.M. de Klein ◽  
K.C. Cameron ◽  
H.J. Di ◽  
G. Rys ◽  
R.M. Monaghan ◽  
...  

2014 ◽  
Vol 11 (9) ◽  
pp. 13571-13603 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT + DCD), and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01kg N2O-N ha−1 by application of DCD, NBPT and NBPT + DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


2008 ◽  
Vol 48 (2) ◽  
pp. 147 ◽  
Author(s):  
Coby J. Hoogendoorn ◽  
Cecile A. M. de Klein ◽  
Alison J. Rutherford ◽  
Selai Letica ◽  
Brian P. Devantier

Urine deposited by grazing animals represents the largest source of N2O emissions in New Zealand. Sheep-grazed hill pastures are an important component of New Zealand pastoral land, but information on N2O emissions from these areas is limited. The purpose of this study was to investigate the effect of increasing rates of fertiliser nitrogen and of a nitrification inhibitor on N2O emissions from urine patches. The study was carried out in grazed paddock-scale trials at the Ballantrae and Invermay Research Stations, New Zealand. The fertiliser N treatments were 0, 100, 300 and 750 (500 for Invermay) kg N/ha.year. Nitrous oxide measurements were conducted in the spring of 2005 and 2006, following applications of synthetic sheep urine with or without dicyandiamide (DCD) in these four N treatments. In both years and at both sites, N2O emissions increased with N fertiliser application rate in both urine and non-urine affected areas. The addition of DCD to the synthetic urine reduced N2O emissions from the urine affected areas during the measurement period by 60–80% at Ballantrae and by 40% at Invermay. The N2O emission factors for the artificial sheep urine (expressed as N2O-N lost as % of N applied) ranged from 0.01 to 1.06%, with the higher values generally found in the high N fertiliser treatments. The N2O emission factors were generally less than or similar to those from sheep urine applied to flat land pasture.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 544 ◽  
Author(s):  
Clemens Scheer ◽  
David W. Rowlings ◽  
Massimiliano De Antoni Migliorati ◽  
David W. Lester ◽  
Mike J. Bell ◽  
...  

To meet the global food demand in the coming decades, crop yields per unit area must increase. This can only be achieved by a further intensification of existing cropping systems and will require even higher inputs of N fertilisers, which may result in increased losses of nitrous oxide (N2O) from cropped soils. Enhanced efficiency fertilisers (EEFs) have been promoted as a potential strategy to mitigate N2O emissions and improve nitrogen use efficiency (NUE) in cereal cropping systems. However, only limited data are currently available on the use of different EEF products in sub-tropical cereal systems. A field experiment was conducted to investigate the effect of three different EEFs on N2O emissions, NUE and yield in a sub-tropical summer cereal cropping system in Australia. Over an entire year soil N2O fluxes were monitored continuously (3h sampling frequency) with a fully-automated measuring system. The experimental site was fertilised with different nitrogen (N) fertilisers applied at 170kgNha–1, namely conventional urea (Urea), urea with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), polymer-coated urea (PCU), and urea with the nitrification inhibitor nitrapyrin (Nitrapyrin). Nitrous oxide emissions were highly episodic and mainly controlled by heavy rainfall events within two months of planting and fertiliser N application. Annual N2O emissions in the four treatments amounted to 2.31, 0.40, 0.69 and 1.58kgN2O-Nha–1year–1 for Urea, DMPP, PCU and Nitrapyrin treatments, respectively, while unfertilised plots produced an average of 0.16kgN2O-Nha–1year–1. Two of the tested products (DMPP and PCU) were found to be highly effective, decreasing annual N2O losses by 83% and 70%, respectively, but did not affect yield or NUE. This study shows that EEFs have a high potential to decrease N2O emissions from sub-tropical cereal cropping systems. More research is needed to assess if the increased costs of EEFs can be compensated by lower fertiliser application rates and/or yield increases.


Soil Research ◽  
2003 ◽  
Vol 41 (3) ◽  
pp. 381 ◽  
Author(s):  
Cecile A. M. de Klein ◽  
Louise Barton ◽  
Robert R. Sherlock ◽  
Zheng Li ◽  
Roger P. Littlejohn

The Intergovernmental Panel on Climate Change methodology estimates that over 50% of total nitrous oxide (N2O) emissions in New Zealand derive from animal excreta-N deposited during grazing. The emission factor for excreta-N as used by this methodology has an important impact on New Zealand's total N2O inventory. The objectives of this study were to refine the N2O emission factor for urine by simultaneously measuring N2O emissions from 5 pastoral soils of different drainage class, in 3 different regions in New Zealand following a single application of urine; plus test various aspects of the soil cover method for determining emission factors. Cow urine and synthetic urine was applied to pastoral soils in autumn 2000 and N2O emissions were measured using closed flux chambers at regular intervals for 4–18 months following application. The N2O emission factors for cow urine estimated for the first 4 months after urine application varied greatly depending on rainfall and soil drainage class, and ranged from 0.3 to 2.5% of the urine-N applied, suggesting that adopting a single emission factor for New Zealand may be inappropriate. The largest emission factor was found in a poorly drained soil, and the lowest emission factor was found in a well-drained stony soil. Ongoing measurements on one of the soils resulted in an increase in emission factors as the N2O emissions had not reached background levels 4 months after urine application. To characterise urine-induced N2O emissions, we recommend measurements continue until N2O emissions from urine-amended soil return to background levels. Furthermore, we recommend using real animal urine rather than synthetic urine in studies when determining the N2O emission factor for urine.


Sign in / Sign up

Export Citation Format

Share Document