Carbon storage in a Ferrosol under subtropical rainforest, tree plantations, and pasture is linked to soil aggregation

Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 341 ◽  
Author(s):  
Anna E. Richards ◽  
Ram C. Dalal ◽  
Susanne Schmidt

Soil is a large sink for carbon (C), with the potential to significantly reduce the net increase in atmospheric CO2 concentration. However, we previously showed that subtropical tree plantations store less C into long-term soil pools than rainforest or pasture. To explore reasons for differences in C storage between different land-use systems, we examined the relationships between soil aggregation, iron and aluminium oxide and hydroxide content, and soil organic C (SOC) under exotic C4 pasture (Pennisetum clandestinum), native hoop pine (Araucaria cunninghamii) plantations, and rainforest. We measured SOC concentrations of water-stable and fully dispersed aggregates to assess the location of soil C. Concentrations of dithionite- and oxalate-extractable iron and aluminium were also determined to assess their role in SOC sequestration. Soil under rainforest and pasture contained more C in intra-aggregate particulate organic matter (iPOM, >53 μm) than hoop pine plantations, indicating that in rainforest and pasture, greater stabilisation of SOC occurred via soil aggregation. SOC was not significantly correlated with dithionite- and oxalate-extractable Fe and Al in these systems, indicating that sorption sites of Fe and Al oxides and hydroxides were saturated. We concluded that soil C under rainforest and pasture is stabilised by incorporation within soil aggregates, which results in greater storage of C in soil under pasture than plantations following land-use change. The reduced storage of C as iPOM in plantation soil contributes to the negative soil C budget of plantations compared with rainforest and pasture, even 63 years after establishment. The results have relevance for CO2 mitigation schemes based on tree plantations.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruirui Cao ◽  
Longchi Chen ◽  
Xincun Hou ◽  
Xiaotao Lü ◽  
Haimei Li

Abstract Background Despite the crucial role of nitrogen (N) availability in carbon (C) cycling in terrestrial ecosystems, soil organic C (SOC) mineralization in different sizes of soil aggregates under various land use types and their responses to N addition is not well understood. To investigate the responses of soil C mineralization in different sized aggregates and land use types to N addition, an incubation experiment was conducted with three aggregate-size classes (2000, 250, and 53 μm) and two land use types (a Chinese fir plantation and a paddy land). Results Cumulative C mineralization of the < 53-μm fractions was the highest and that of microaggregates was the lowest in both forest and paddy soils, indicating that soil aggregates enhanced soil C stability and reduced the loss of soil C. Cumulative C mineralization in all sizes of aggregates treated with N addition decreased in forest soils, but that in microaggregates and the < 53-μm fraction increased in paddy soils treated with 100 μg N g−1. Moreover, the effect sizes of N addition on C mineralization of forest soils were below zero, but those of paddy soils were above zero. These data indicated that N addition decreased SOC mineralization of forest soils but increased that of paddy soils. Conclusions Soil aggregates play an important role in soil C sequestration, and decrease soil C loss through the increase of soil C stability, regardless of land use types. N addition has different effects on soil C mineralization in different land use types. These results highlight the importance of soil aggregates and land use types in the effects of N deposition on the global terrestrial ecosystem C cycle.


2021 ◽  
Author(s):  
Marlon Calispa ◽  
Raphaël van Ypersele ◽  
Benoît Pereira ◽  
Sebastián Páez-Bimos ◽  
Veerle Vanacker ◽  
...  

&lt;p&gt;The Ecuadorian p&amp;#225;ramo, a neotropical ecosystem located in the upper Andes, acts as a constant source of high-quality water. It also stores significant amounts of C at the regional scale. In this region, volcanic ash soils sustain most of the paramo, and C storage results partly from their propensity to accumulate organic matter. Vegetation type is known to influence the balance between plant C inputs and soil C losses, ultimately affecting the soil organic C (SOC) content and stock. Tussock-forming grass (spp. Calamagrostis Intermedia; TU), cushion-like plants (spp. Azorella pedunculata; CU) and shrubs and trees (Polylepis stands) are commonly found in the p&amp;#225;ramo. Our understanding of SOC stocks and dynamics in the p&amp;#225;ramo remains limited, despite mounting concerns that human activities are increasingly affecting vegetation and potentially, the capacity of these ecosystems to store C.&lt;/p&gt;&lt;p&gt;Here, we compare the organic C content and stock in soils under tussock-forming grass (spp. Calamagrostis Intermedia; TU) and soils under cushion-like plants (spp. Azorella pedunculata; CU). The study took place at Jatunhuayco, a watershed on the western slopes of Antisana volcano in the northern Ecuadorian Andes. Two areas of similar size (~0.35 km&lt;sup&gt;2&lt;/sup&gt;) were surveyed. Fourty soil samples were collected randomly in each area to depths varying from 10 to 30 cm (A horizon) and from 30 to 75 cm (2Ab horizon). The soils are Vitric Andosols and the 2Ab horizon corresponds to a soil buried by the tephra fall from the Quilotoa eruption about 800 yr. BP. Sixteen intact soil samples were collected in Kopecky's cylinders for bulk density (BD) determination of each horizon.&lt;/p&gt;&lt;p&gt;The average SOC content in the A horizon of the CU sites (9.4&amp;#177;0.5%) is significantly higher (Mann-Whitney U test, p&lt;0.05) than that of the TU sites (8.0&amp;#177;0.4%), probably reflecting a larger input of root biomass from the cushion-forming plants. The 2Ab horizon contains less organic C (i.e. TU: 4.3&amp;#177;0.3% and CU: 4.0&amp;#177;0.4%) than the A horizon, but the SOC contents are undistinguishable between the two vegetation types. This suggests that the influence of vegetation type on SOC is limited to the A horizon. The average SOC stocks (in the first 30 cm from the soil) for TU and CU are 20.04&amp;#177;1.1 and 18.23&amp;#177;1.0 kg/m&lt;sup&gt;2&lt;/sup&gt;,&lt;sup&gt;&lt;/sup&gt;respectively. These values are almost two times greater than the global average reported for Vitric Andosols (~8.2 kg/m&lt;sup&gt;2&lt;/sup&gt;&amp;#160;), but are lower than the estimates obtained for some wetter Andean p&amp;#225;ramos (22.5&amp;#177;5 kg/m&lt;sup&gt;2&lt;/sup&gt;, 270% higher rainfall) from Ecuador. Our stock values further indicate that vegetation type has a limited effect on C storage in the young volcanic ash soils found at Jatunhuyaco. Despite a higher SOC content, the CU soils store a stock of organic C similar to that estimated for the TU soils. This likely reflects the comparatively lower BD of the former soils (650&amp;#177;100 vs. 840&amp;#177;30 kg/m&lt;sup&gt;3&lt;/sup&gt;). Additional studies are needed in order to establish the vegetation-related factors driving the SOC content and stability in the TU and CU soils.&lt;/p&gt;


2020 ◽  
Vol 29 (2) ◽  
pp. e009
Author(s):  
Cuong Levan ◽  
Hung Buimanh ◽  
Bolanle-Ojo Oluwasanmi Tope ◽  
Xiaoniu Xu ◽  
Thanh Nguyenminh ◽  
...  

Aim of the study: The major objective of this study was to estimate the biomass increment and carbon (C) storage of the main ecosystem components in an age-sequence of three Acacia mangium plantation stands.Area of study: Chang Riec Historical - Cultural Forest, Southeastern region, Vietnam.Material and methods: In order to assess the biomass of different tree components, 36 trees with diameter at breast height ranging from 13.38 to 22.87 cm were harvested from the different aged stands. Biomasses of understory (shrubs and herbs), and litter were also determined. Carbon storage in the trees and understory biomass, litter, and mineral soil (0-50 cm) were determined by analyzing the C content of each compartment.Main results: The biomass in trees, understory vegetation, litter, and ecosystem increased with stand age. Soil C represented 61.99% of the total, aboveground tree biomass C made up 26.73%, belowground tree biomass C accounted for 7.01%, and litter comprised 2.96%, whereas only a small amount (1.30%) was associated with understory vegetation. The average C content of total tree (47.97%) was higher than those of understory and litter. Soil organic C stock in the top 50 cm depth in 4-, 7- and 11-year-old stands of A. mangium were 86.86, 126.88 and 140.94 Mg. C ha-1 respectively. Soil C concentration decreased continually with increasing soil depth. Total C storage of three planted forests ranged from 131.36 to 255.86 Mg. C ha-1, of which 56.09 - 67.61% of C storage was in the soil and 26.88 - 40.40% in the trees.Research highlights: These results suggest that A. mangium is a promising afforestation tree species with fast growing, high biomass accumulation and high C sequestration potential.Keywords: Acacia mangium plantations; Biomass; Ecosystem carbon storage; Age-sequence; Vietnam.


2018 ◽  
Author(s):  
Natalia Andrea Osinaga ◽  
Carina Rosa Álvarez ◽  
Miguel Angel Taboada

Abstract. Abstract. The sub-humid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the '70 and replacement of the forest by no till farming. Land use changes produced a decrease in aboveground carbon stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1 m depth in soils under different land use:  20 yr continuous cropping, warm season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1 m depth expressed as equivalent mass varied as follows: forest (119.3 Mg ha−1) > pasture (87.9 Mg ha−1) > continuous cropping (71.9 and 77.3 Mg ha−1), with no impact of the number of years under cropping. The most sensitive organic carbon fraction was the coarse particle fraction (2000 μm–212 μm) at 0–5 cm and 5–20 cm depth layers. Resistant carbon (


2019 ◽  
Vol 192 ◽  
pp. 134-143 ◽  
Author(s):  
Ileana Frasier ◽  
Alberto Quiroga ◽  
Romina Fernández ◽  
Cristian Álvarez ◽  
Florencia Gómez ◽  
...  

2020 ◽  
Vol 31 (7) ◽  
pp. 909-923 ◽  
Author(s):  
Rafael da Silva Teixeira ◽  
Ricardo Cardoso Fialho ◽  
Daniela Cristina Costa ◽  
Rodrigo Nogueira Sousa ◽  
Rafael Silva Santos ◽  
...  

Soil Research ◽  
2018 ◽  
Vol 56 (4) ◽  
pp. 413 ◽  
Author(s):  
Kumari Priyanka ◽  
Anshumali

Loss of labile carbon (C) fractions yields information about the impact of land-use changes on sources of C inputs, pathways of C losses and mechanisms of soil C sequestration. This study dealt with the total organic C (TOC) and labile C pools in 40 surface soil samples (0–15 cm) collected from four land-use practices: uncultivated sites and rice–wheat, maize–wheat and sugarcane agro-ecosystems. Uncultivated soils had a higher total C pool than croplands. The soil inorganic C concentrations were in the range of 0.7–1.4 g kg–1 under different land-use practices. Strong correlations were found between TOC and all organic C pools, except water-extractable organic C and mineralisable C. The sensitivity index indicated that soil organic C pools were susceptible to changes in land-use practices. Discriminant function analysis showed that the nine soil variables could distinguish the maize–wheat and rice–wheat systems from uncultivated and sugarcane systems. Finally, we recommend crop rotation practices whereby planting sugarcane replenishes TOC content in soils.


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 894
Author(s):  
Parijat Saikia ◽  
Kushal Kumar Baruah ◽  
Satya Sundar Bhattacharya ◽  
Chandrima Choudhury

Soil organic carbon (C) management in agricultural fields can act improve soil health and productivity. However, reports on the C release pattern and the interactive effects of plant physiological parameters on soil C storage from subtropical regions of the world where rice is cultivated as a dominant food crop are inadequate. The interactions between plant metabolism, soil C storage, and organic-based nutrient management schemes have been little studied. Hence, a study was undertaken in rainfed winter rice to evaluate the effects of different levels of organics (crop residue (CR) and farmyard manure (FYM)) along with inorganic (NPK) inputs in an alluvial soil. The experiment was conducted in a typical humid subtropical climate in north-eastern India. The CR of the preceding rice crop (pre-monsoon) and cow dung based FYM were used as organic inputs for monsoon rice, which were applied in various combinations with inorganic fertilisers. We studied the influence of these selected nutrient management schemes on soil health attributes, C storage, and plant parameters. The highest gain in C storage (11.65%) was in soil under 80% NPK + CR (5 t ha–1) + FYM (10 t ha–1) treatment. Correspondingly, significant improvement (P &lt; 0.05) in total C, dissolved organic C, and nitrogen availability in soil was evident under this treatment leading to augmentation of soil organic matter status and the net amount of sequestered C in soil after two years of rice cultivation. Such improvements resulted in greater flag leaf photosynthesis, biomass accumulation, and grain yield than the conventionally managed crops. Overall, this research showcases that organic-dominated nutrient management not only restored soil health but was also able to compensate 20% of the recommended NPK fertilisation without penalty on crop yield.


Author(s):  
Sulamirtes S. de A. Magalhaes ◽  
Fabricio T. Ramos ◽  
Oscarlina L. dos S. Weber

ABSTRACT Soil carbon (C) stock determination can subsidize discussions on the continuity of an agricultural management. This study aimed to evaluate the stocks of total organic C (STOC) and labile C (SLC), and the indices of C lability (CLI), C compartment (CCI) and C management (CMI), and correlate them with chemical and physical attributes of a Red Yellow Latosol (Oxisol) managed for 38 years with different tillage systems in a Cerrado region of Mato Grosso, Brazil. Disturbed and undisturbed soil samples were collected in three layers (0-0.05, 0.05-0.10 and 0.10-0.20 m). The CMI (CLI x CCI) showed higher STOC possibly as the tillage depth decreased, because none of the tillage systems conserved STOC and SLC in the layers of 0-0.05 and 0.05-0.10 m, compared with the Native Cerrado, i.e., soil C conservation only occurred in the layer of 0.10-0.20 m. Although the percentage of SLC in STOC was lower, only SLC was correlated with soil chemical and physical attributes and, based on the multiple linear regression analysis, SLC was explained in 54% (R2) by the cation exchange capacity and soil micropores. Therefore, for monitoring purposes, the SLCestimated can be useful to evaluate soil C storage.


2011 ◽  
Vol 8 (8) ◽  
pp. 2195-2208 ◽  
Author(s):  
A. Kammer ◽  
F. Hagedorn

Abstract. Very few field studies have quantified the different pathways of C loss from decomposing litter even though the partitioning of C fluxes is essential to understand soil C dynamics. Using 0.75 kg m−2 of 13C-depleted leaf (δ13C = −40.8 ‰) and 2 kg m−2 of twig litter (δ13C = −38.4 ‰), we tracked the litter-derived C in soil CO2 effluxes, dissolved organic C (DOC), and soil organic matter of a beech forest in the Swiss Jura. Autotrophic respiration was reduced by trenching. Our results show that mineralisation was the main pathway of C loss from decomposing litter over 1 yr, amounting to 24 and 31 % of the added twig and leaf litter. Contrary to our expectations, the leaf litter C was mineralised only slightly (1.2 times) more rapidly than the twig litter C. The leaching of DOC from twigs amounted to half of that from leaves throughout the experiment (2 vs. 4 % of added litter C). Tracing the litter-derived DOC in the soil showed that DOC from both litter types was mostly removed (88–96 %) with passage through the top centimetres of the mineral soil (0–5 cm) where it might have been stabilised. In the soil organic C at 0–2 cm depth, we indeed recovered 4 % of the initial twig C and 8 % of the leaf C after 1 yr. Much of the 13C-depleted litter remained on the soil surface throughout the experiment: 60 % of the twig litter C and 25 % of the leaf litter C. From the gap in the 13C-mass balance based on C mineralisation, DOC leaching, C input into top soils, and remaining litter, we inferred that another 30 % of the leaf C but only 10 % of twig C could have been transported via soil fauna to soil depths below 2 cm. In summary, over 1 yr, twig litter was mineralised more rapidly relative to leaf litter than expected, and much less of the twig-derived C was transported to the mineral soil than of the leaf-derived C. Both findings provide some evidence that twig litter could contribute less to the C storage in these base-rich forest soils than leaf litter.


Sign in / Sign up

Export Citation Format

Share Document