scholarly journals Nitrogen addition reduced carbon mineralization of aggregates in forest soils but enhanced in paddy soils in South China

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruirui Cao ◽  
Longchi Chen ◽  
Xincun Hou ◽  
Xiaotao Lü ◽  
Haimei Li

Abstract Background Despite the crucial role of nitrogen (N) availability in carbon (C) cycling in terrestrial ecosystems, soil organic C (SOC) mineralization in different sizes of soil aggregates under various land use types and their responses to N addition is not well understood. To investigate the responses of soil C mineralization in different sized aggregates and land use types to N addition, an incubation experiment was conducted with three aggregate-size classes (2000, 250, and 53 μm) and two land use types (a Chinese fir plantation and a paddy land). Results Cumulative C mineralization of the < 53-μm fractions was the highest and that of microaggregates was the lowest in both forest and paddy soils, indicating that soil aggregates enhanced soil C stability and reduced the loss of soil C. Cumulative C mineralization in all sizes of aggregates treated with N addition decreased in forest soils, but that in microaggregates and the < 53-μm fraction increased in paddy soils treated with 100 μg N g−1. Moreover, the effect sizes of N addition on C mineralization of forest soils were below zero, but those of paddy soils were above zero. These data indicated that N addition decreased SOC mineralization of forest soils but increased that of paddy soils. Conclusions Soil aggregates play an important role in soil C sequestration, and decrease soil C loss through the increase of soil C stability, regardless of land use types. N addition has different effects on soil C mineralization in different land use types. These results highlight the importance of soil aggregates and land use types in the effects of N deposition on the global terrestrial ecosystem C cycle.

Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 341 ◽  
Author(s):  
Anna E. Richards ◽  
Ram C. Dalal ◽  
Susanne Schmidt

Soil is a large sink for carbon (C), with the potential to significantly reduce the net increase in atmospheric CO2 concentration. However, we previously showed that subtropical tree plantations store less C into long-term soil pools than rainforest or pasture. To explore reasons for differences in C storage between different land-use systems, we examined the relationships between soil aggregation, iron and aluminium oxide and hydroxide content, and soil organic C (SOC) under exotic C4 pasture (Pennisetum clandestinum), native hoop pine (Araucaria cunninghamii) plantations, and rainforest. We measured SOC concentrations of water-stable and fully dispersed aggregates to assess the location of soil C. Concentrations of dithionite- and oxalate-extractable iron and aluminium were also determined to assess their role in SOC sequestration. Soil under rainforest and pasture contained more C in intra-aggregate particulate organic matter (iPOM, >53 μm) than hoop pine plantations, indicating that in rainforest and pasture, greater stabilisation of SOC occurred via soil aggregation. SOC was not significantly correlated with dithionite- and oxalate-extractable Fe and Al in these systems, indicating that sorption sites of Fe and Al oxides and hydroxides were saturated. We concluded that soil C under rainforest and pasture is stabilised by incorporation within soil aggregates, which results in greater storage of C in soil under pasture than plantations following land-use change. The reduced storage of C as iPOM in plantation soil contributes to the negative soil C budget of plantations compared with rainforest and pasture, even 63 years after establishment. The results have relevance for CO2 mitigation schemes based on tree plantations.


2005 ◽  
Vol 2 (1) ◽  
pp. 203-238 ◽  
Author(s):  
D. Huygens ◽  
P. Boeckx ◽  
O. Van Cleemput ◽  
R Godoy ◽  
C. Oyarzún

Abstract. The extreme vulnerability of soil organic carbon to climate and land use change emphasizes the need for further research in different terrestrial ecosystems. We have studied the aggregate stability and carbon dynamics in a chronosequence of three different land uses in a south Chilean Andisols: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). The aim of this study was to investigate the role of Al as soil organic matter stabilizing agent in this Andisol. In a case study, we linked differences in carbon dynamics between the three land use treatments to physical protection and recalcitrance of the soil organic matter (SOM). In this study, C aggregate stability and dynamics were studied using size and density fractionation experiments of the SOM, δ13C and total carbon analysis of the different SOM fractions, and mineralization measurements. The results showed that electrostatic attractions between and among Al-oxides and clay minerals are mainly responsible for the stabilization of soil aggregates and the physical protection of the enclosed soil organic carbon. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS. In contrast, incubation experiments of isolated macro organic matter fractions showed that the recalcitrance of the SOM decreased in another order: PINUS > SGFOR > GRASS. We concluded that physical protection of soil aggregates was the main process determining whole soil C mineralization. Land use changes affected soil organic carbon dynamics in this south Chilean Andisol by altering soil pH and consequently available Al.


2019 ◽  
Author(s):  
Fayong Li ◽  
Xinqiang Liang ◽  
Hua Li ◽  
Yingbin Jin ◽  
Junwei Jin ◽  
...  

Abstract Background Colloid-facilitated phosphorus (P) transport is a recognized important pathway for soil P loss in agricultural systems, but limited information is available on the soil aggregate-associated colloidal P. To elucidate the effects of aggregate size on the loss potential of colloidal P (P coll ) in agricultural systems, soils (0-20 cm depth) from six land use types were sampled in Zhejiang province in the Yangtz river delta region, China. The aggregate size fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and <0.053 mm) separated by wet-sieving method were analyzed.Results Results showed that the 0.26–2 mm small macroaggregates had the highest total P (TP) content. For acidic soils, the highest P coll content was also found in the 0.26–2 mm aggregate size, while the lowest was found in the <0.053 mm (silt+clay)-sized particles, the opposite of that found in alkaline soils. Paddy soils contained less P coll than other land use types. The P coll in total dissolved P (TDP) was dominated by <0.053 mm (silt+clay)-sized particles. Aggregate size did strongly influence the loss potential of P coll in paddy soils, where P coll contributed up to 83% TDP in the silt+clay sized particles. The P coll content was positively correlated with TP, Al, Fe and mean weight diameter (MWD). Aggregate associated total carbon (TC), total nitrogen (TN), C/P, and C/N had significant, but negative effects on the contribution of P coll to potential soil P losses. The P coll content of the aggregates was controlled by aggregate associated TP and Al content as well as soil pH value, with P coll loss potential from aggregates being controlled by its organic matter content.Conclusion Therefore, we conclude that management practices that increase soil aggregate stability or its organic carbon content will limit P coll loss from agricultural systems.


2018 ◽  
Author(s):  
Natalia Andrea Osinaga ◽  
Carina Rosa Álvarez ◽  
Miguel Angel Taboada

Abstract. Abstract. The sub-humid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the '70 and replacement of the forest by no till farming. Land use changes produced a decrease in aboveground carbon stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1 m depth in soils under different land use:  20 yr continuous cropping, warm season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1 m depth expressed as equivalent mass varied as follows: forest (119.3 Mg ha−1) > pasture (87.9 Mg ha−1) > continuous cropping (71.9 and 77.3 Mg ha−1), with no impact of the number of years under cropping. The most sensitive organic carbon fraction was the coarse particle fraction (2000 μm–212 μm) at 0–5 cm and 5–20 cm depth layers. Resistant carbon (


2018 ◽  
Vol 10 (10) ◽  
pp. 3477 ◽  
Author(s):  
Fuqiang Dai ◽  
Zhiqiang Lv ◽  
Gangcai Liu

Ecologically fragile cropland soils and intensive agricultural production are characteristic of the valley area of the Tibetan Plateau. A systematic assessment of soil quality is necessary and important for improving sustainable cropland management in this area. This study aims to establish a minimum data set (MDS) for soil quality assessment and generate an integrated soil quality index for sustainable cropland management in the Tibetan Plateau. Soil samples were collected from the 0–20 cm depths of agricultural land in the middle and lower reaches of the Lhasa River. These samples were analyzed by routine laboratory methods. Significant differences were identified via statistical test between different soil types and land use types for each soil property. Principal component analysis was used to define a MDS of indicators that determine soil quality. Consequently, effective porosity, pH, total organic C, total N, available P, and catalase were identified as the final MDS. The soil quality index was obtained by the fuzzy-set membership function and the linear weighted additive method. The soil quality index differed significantly between the soil types and land use types. The soil quality can be ranked based on their indices in the following order: 1. Grain land with meadow soils, 2. Grain land with steppe soils, 3. Greenhouse vegetable land with fluvo-aquic soils, 4. Grain land with fluvo-aquic soils. The soils with higher soil quality indices exhibited better soil structure, higher nutrient contents, and superior resistance to water and nutrient loss. While the intensive tillage practices associated with vegetable production could reduce the values for effective porosity, pH and catalase, the application of appropriate fertilizers increased the values for total organic C, total N and available P. Therefore, the MDS method is an effective and useful tool to identify the key soil properties for assessing soil quality, and provides guidance on adaptive cropland management to a variety of soil types and land use types.


2020 ◽  
Vol 31 (7) ◽  
pp. 909-923 ◽  
Author(s):  
Rafael da Silva Teixeira ◽  
Ricardo Cardoso Fialho ◽  
Daniela Cristina Costa ◽  
Rodrigo Nogueira Sousa ◽  
Rafael Silva Santos ◽  
...  

Soil Research ◽  
2018 ◽  
Vol 56 (4) ◽  
pp. 413 ◽  
Author(s):  
Kumari Priyanka ◽  
Anshumali

Loss of labile carbon (C) fractions yields information about the impact of land-use changes on sources of C inputs, pathways of C losses and mechanisms of soil C sequestration. This study dealt with the total organic C (TOC) and labile C pools in 40 surface soil samples (0–15 cm) collected from four land-use practices: uncultivated sites and rice–wheat, maize–wheat and sugarcane agro-ecosystems. Uncultivated soils had a higher total C pool than croplands. The soil inorganic C concentrations were in the range of 0.7–1.4 g kg–1 under different land-use practices. Strong correlations were found between TOC and all organic C pools, except water-extractable organic C and mineralisable C. The sensitivity index indicated that soil organic C pools were susceptible to changes in land-use practices. Discriminant function analysis showed that the nine soil variables could distinguish the maize–wheat and rice–wheat systems from uncultivated and sugarcane systems. Finally, we recommend crop rotation practices whereby planting sugarcane replenishes TOC content in soils.


2020 ◽  
Author(s):  
Frank Hagedorn ◽  
Sia Gosheva ◽  
Stephan Zimmermann ◽  
Konstantin Gavazov

&lt;p&gt;Forest soils are storing large quantities of carbon, but their quantitative role in sequestering C is less certain. In principal, soils developed over millennia are assumed to be &amp;#8216;in equilibrium&amp;#8217; with minimal C stock changes. This concept is challenged by forest soil inventories (in Germany and France) indicate a substantial increase in soil C storage. However, soil organic matter (SOM) storage is susceptible to recent changes in forests - climate warming and droughts, increasing forest disturbances, and a more intensive forest management are all potentially increasing SOM turnover which may turn forest soils into C sources. Here, I will critically discuss the role in Swiss forest soils as C sinks by presenting data from 1000 soil profiles across environmental gradients and from flux measurements in large scale ecosystem manipulation experiments.&lt;/p&gt;&lt;p&gt;Swiss forests soils are among the C-richest soils in Europe storing on average 140 t C/ha. Analysis of 1000 forest soils show that these SOM stocks are caused by their high contents in potential SOM sorbents (pH, Al+Fe-oxides, Ca, clay), but also by the cool temperatures and high amounts of precipitation. Climate manipulation experiments suggest Swiss forest soils are vulnerable to loose C with expected climatic changes. A six year long soil warming experiment at treeline revealed soil C losses, while a 15 year long irrigation experiment in a dry forest induced C gains in the mineral soil, implying that a warmer and more frequent droughts will lead to C losses.&lt;/p&gt;&lt;p&gt;Switzerland - as other European mountainous areas &amp;#8211; is currently experiencing a major change in land-use due to land abandonment, with the forests expanding by 3 to 4% per decade. Forest expansion affects a multitude of factors driving SOM cycling and storage, including the quantity and quality of organic matter inputs above and below the ground, a cooler and drier microclimate, and change in microbial diversity and activity. In contrast to the intuitive assumption that forests expansion leads to C gains in soils, measurements along an afforestation chronosequence of alpine grassland show that forest expansion leads to minimal changes in SOM stocks but a strong change in SOM quality. Soils gains in particulate organic matter with increasing forest age but lose C in mineral-associated organic matter. In support, reconstructing forest cover ages of 850 soil profiles showed that forest age and hence time since conversion into forest (predominantly from grasslands) did not significantly affect total SOM stocks, while other factors, especially physico-chemical soil characteristics and climate were more important. Overall, these results show that the inherently C rich forest soils in Switzerland are unlikely to gain additional C but rather loose it in response to the ongoing changes in climate and land-use. &lt;/p&gt;


2021 ◽  
Author(s):  
Mengyang You ◽  
Xia Zhu-Barker ◽  
Timothy A. Doane ◽  
William R. Horwath

AbstractThe interaction of organic carbon (OC) with clay and metals stabilizes soil carbon (C), but the influence of specific clay-metal-OC assemblages (flocs) needs further evaluation. This study aimed to investigate the stability of flocs in soil as affected by external C inputs. Flocs representing OC-mineral soil fractions were synthesized using dissolved organic C (DOC) combined with kaolinite (1:1 layer structure) or montmorillonite (2:1 layer structure) clays in the absence or presence of two levels of Fe (III) (named low or high Fe). Flocs were mixed with soil (classified as Luvisol) and incubated with or without 13C labelled plant residue (i.e., ryegrass) for 30 days. The CO2 emissions and DOC concentrations as well as their 13C signatures from all treatments were examined. Total C mineralization from flocs was approximately 70% lower than non-flocced DOC. The flocs made with montmorillonite had 16–43% lower C mineralization rate than those made with kaolinite with no Fe or low Fe. However, when flocs were made with high Fe, clay mineralogy did not significantly affect total C mineralization. A positive priming effect (PE) of flocs on native soil OC was observed in all treatments, with a stronger PE found in lower Fe treatments. The high-Fe clay flocs inhibited ryegrass decomposition, while the flocs made without clay had no impact on it. Interestingly, flocs significantly decreased the PE of ryegrass on native soil OC decomposition. These results indicate that the adsorption of DOC onto clay minerals in the presence of Fe (III) stabilizes it against decomposition processes and its stability increases as Fe in flocs increases. Flocs also protect soil OC from the PE of external degradable plant C input. This study showed that Fe level and clay mineralogy play an important role in controlling soil C stability.


2016 ◽  
Author(s):  
Zhenke Zhu ◽  
Guanjun Zeng ◽  
Tida Ge ◽  
Yajun Hu ◽  
Chengli Tong ◽  
...  

Abstract. The input of recently photosynthesized C has significant implications on soil organic carbon sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-d incubation study with four different 13C-labelled substrates: rice shoots (Shoot-C), rice roots (Root-C), rice rhizodeposits (Rhizo-C), and microbe-assimilated C (Micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in Shoot-C-, Root-C-, Rhizo-C-, and Micro-C-treated soils rapidly increased at the beginning of the incubation and then decreased gradually afterwards. In addition, the highest level of C mineralization was observed in Root-C-treated soil (45.4 %), followed by Shoot-C- (31.9 %), Rhizo-C- (7.9 %), and Micro-C-treated (7.7 %) soils, which corresponded with mean residence times of 33.4, 46.1, 62.9, and 192 d, respectively. Furthermore, the cumulative mineralization of native soil organic carbon in Shoot-C-treated soils was 1.48- fold higher than in untreated soils, and the priming effect of Shoot-C on CO2 and CH4 emission was strongly positive over the entire incubation. However, Root-C failed to exhibit a significant priming effect, which suggests that it could potentially be used to mitigate CH4 emission. Although the total C contents of Rhizo-C- (1.89 %) and Micro-C-treated soils (1.9 %) were higher than those of untreated soil (1.8 %), no significant differences in total C emissions were observed. However, the 13C emissions of Rhizo-C- and Micro-C-treated soils gradually increased over the entire incubation period, which indicated that soil organic C-derived emissions were lower in Rhizo-C- and Micro-C-treated soils than in untreated soil, and that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native soil organic carbon and to effectively improve soil C sequestration. The contrasting behaviours of the different photosynthesized C substrates suggests that recycling rice roots in paddies is more beneficial than recycling shoots and reveals the importance of increasing rhizodeposits and microbe-assimilated C in paddy soils via nutrient management.


Sign in / Sign up

Export Citation Format

Share Document