scholarly journals Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam

2020 ◽  
Vol 29 (2) ◽  
pp. e009
Author(s):  
Cuong Levan ◽  
Hung Buimanh ◽  
Bolanle-Ojo Oluwasanmi Tope ◽  
Xiaoniu Xu ◽  
Thanh Nguyenminh ◽  
...  

Aim of the study: The major objective of this study was to estimate the biomass increment and carbon (C) storage of the main ecosystem components in an age-sequence of three Acacia mangium plantation stands.Area of study: Chang Riec Historical - Cultural Forest, Southeastern region, Vietnam.Material and methods: In order to assess the biomass of different tree components, 36 trees with diameter at breast height ranging from 13.38 to 22.87 cm were harvested from the different aged stands. Biomasses of understory (shrubs and herbs), and litter were also determined. Carbon storage in the trees and understory biomass, litter, and mineral soil (0-50 cm) were determined by analyzing the C content of each compartment.Main results: The biomass in trees, understory vegetation, litter, and ecosystem increased with stand age. Soil C represented 61.99% of the total, aboveground tree biomass C made up 26.73%, belowground tree biomass C accounted for 7.01%, and litter comprised 2.96%, whereas only a small amount (1.30%) was associated with understory vegetation. The average C content of total tree (47.97%) was higher than those of understory and litter. Soil organic C stock in the top 50 cm depth in 4-, 7- and 11-year-old stands of A. mangium were 86.86, 126.88 and 140.94 Mg. C ha-1 respectively. Soil C concentration decreased continually with increasing soil depth. Total C storage of three planted forests ranged from 131.36 to 255.86 Mg. C ha-1, of which 56.09 - 67.61% of C storage was in the soil and 26.88 - 40.40% in the trees.Research highlights: These results suggest that A. mangium is a promising afforestation tree species with fast growing, high biomass accumulation and high C sequestration potential.Keywords: Acacia mangium plantations; Biomass; Ecosystem carbon storage; Age-sequence; Vietnam.

2017 ◽  
Vol 14 (18) ◽  
pp. 4279-4294 ◽  
Author(s):  
Elizabeth E. Webb ◽  
Kathryn Heard ◽  
Susan M. Natali ◽  
Andrew G. Bunn ◽  
Heather D. Alexander ◽  
...  

Abstract. Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV)  =  0.35 between stands) than in the top 30 cm (CV  =  0.14) or soil profile to 1 m (CV  =  0.20). Combined active-layer and deep frozen deposits (surface – 15 m) contained 205 kg C m−2 (yedoma, non-ice wedge) and 331 kg C m−2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density (top 10 cm) was positively related to soil moisture and negatively related to moss and lichen cover. These results suggest that, as the climate warms, changes in stand age and structure may be as important as direct climate effects on belowground environmental conditions and permafrost C vulnerability.


2017 ◽  
Author(s):  
Elizabeth E. Webb ◽  
Kathryn Heard ◽  
Susan M. Natali ◽  
Andrew G. Bunn ◽  
Heather D. Alexander ◽  
...  

Abstract. Permafrost soils store between 1,330–1,580 Pg carbon (C), which is three times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high latitude permafrost region are highly uncertain, primarily due to under sampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly under sampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above and belowground C stocks from twenty sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River near Cherskiy, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (91 %), with 20 % in the top 10 cm of soil and 42 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV) = 0.35 between stands) than in the top 30 cm (CV = 0.14) or soil profile to 1 m (CV = 0.12). Combined active layer and deep frozen deposits (surface – 15 m) contained 205 kg C m-2 (yedoma, non-ice wedge) and 331 kg C m-2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and two orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (9 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was significantly negatively related to stand age, and variability of soil C in the top 10 cm was related to soil moisture and moss and lichen cover. These results suggest that as the climate warms, changes in stand age and structure may be as important as direct climate effects on belowground environmental conditions and permafrost C vulnerability.


2021 ◽  
Author(s):  
Marlon Calispa ◽  
Raphaël van Ypersele ◽  
Benoît Pereira ◽  
Sebastián Páez-Bimos ◽  
Veerle Vanacker ◽  
...  

<p>The Ecuadorian páramo, a neotropical ecosystem located in the upper Andes, acts as a constant source of high-quality water. It also stores significant amounts of C at the regional scale. In this region, volcanic ash soils sustain most of the paramo, and C storage results partly from their propensity to accumulate organic matter. Vegetation type is known to influence the balance between plant C inputs and soil C losses, ultimately affecting the soil organic C (SOC) content and stock. Tussock-forming grass (spp. Calamagrostis Intermedia; TU), cushion-like plants (spp. Azorella pedunculata; CU) and shrubs and trees (Polylepis stands) are commonly found in the páramo. Our understanding of SOC stocks and dynamics in the páramo remains limited, despite mounting concerns that human activities are increasingly affecting vegetation and potentially, the capacity of these ecosystems to store C.</p><p>Here, we compare the organic C content and stock in soils under tussock-forming grass (spp. Calamagrostis Intermedia; TU) and soils under cushion-like plants (spp. Azorella pedunculata; CU). The study took place at Jatunhuayco, a watershed on the western slopes of Antisana volcano in the northern Ecuadorian Andes. Two areas of similar size (~0.35 km<sup>2</sup>) were surveyed. Fourty soil samples were collected randomly in each area to depths varying from 10 to 30 cm (A horizon) and from 30 to 75 cm (2Ab horizon). The soils are Vitric Andosols and the 2Ab horizon corresponds to a soil buried by the tephra fall from the Quilotoa eruption about 800 yr. BP. Sixteen intact soil samples were collected in Kopecky's cylinders for bulk density (BD) determination of each horizon.</p><p>The average SOC content in the A horizon of the CU sites (9.4±0.5%) is significantly higher (Mann-Whitney U test, p<0.05) than that of the TU sites (8.0±0.4%), probably reflecting a larger input of root biomass from the cushion-forming plants. The 2Ab horizon contains less organic C (i.e. TU: 4.3±0.3% and CU: 4.0±0.4%) than the A horizon, but the SOC contents are undistinguishable between the two vegetation types. This suggests that the influence of vegetation type on SOC is limited to the A horizon. The average SOC stocks (in the first 30 cm from the soil) for TU and CU are 20.04±1.1 and 18.23±1.0 kg/m<sup>2</sup>,<sup></sup>respectively. These values are almost two times greater than the global average reported for Vitric Andosols (~8.2 kg/m<sup>2</sup> ), but are lower than the estimates obtained for some wetter Andean páramos (22.5±5 kg/m<sup>2</sup>, 270% higher rainfall) from Ecuador. Our stock values further indicate that vegetation type has a limited effect on C storage in the young volcanic ash soils found at Jatunhuyaco. Despite a higher SOC content, the CU soils store a stock of organic C similar to that estimated for the TU soils. This likely reflects the comparatively lower BD of the former soils (650±100 vs. 840±30 kg/m<sup>3</sup>). Additional studies are needed in order to establish the vegetation-related factors driving the SOC content and stability in the TU and CU soils.</p>


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 894
Author(s):  
Parijat Saikia ◽  
Kushal Kumar Baruah ◽  
Satya Sundar Bhattacharya ◽  
Chandrima Choudhury

Soil organic carbon (C) management in agricultural fields can act improve soil health and productivity. However, reports on the C release pattern and the interactive effects of plant physiological parameters on soil C storage from subtropical regions of the world where rice is cultivated as a dominant food crop are inadequate. The interactions between plant metabolism, soil C storage, and organic-based nutrient management schemes have been little studied. Hence, a study was undertaken in rainfed winter rice to evaluate the effects of different levels of organics (crop residue (CR) and farmyard manure (FYM)) along with inorganic (NPK) inputs in an alluvial soil. The experiment was conducted in a typical humid subtropical climate in north-eastern India. The CR of the preceding rice crop (pre-monsoon) and cow dung based FYM were used as organic inputs for monsoon rice, which were applied in various combinations with inorganic fertilisers. We studied the influence of these selected nutrient management schemes on soil health attributes, C storage, and plant parameters. The highest gain in C storage (11.65%) was in soil under 80% NPK + CR (5 t ha–1) + FYM (10 t ha–1) treatment. Correspondingly, significant improvement (P < 0.05) in total C, dissolved organic C, and nitrogen availability in soil was evident under this treatment leading to augmentation of soil organic matter status and the net amount of sequestered C in soil after two years of rice cultivation. Such improvements resulted in greater flag leaf photosynthesis, biomass accumulation, and grain yield than the conventionally managed crops. Overall, this research showcases that organic-dominated nutrient management not only restored soil health but was also able to compensate 20% of the recommended NPK fertilisation without penalty on crop yield.


Author(s):  
Sulamirtes S. de A. Magalhaes ◽  
Fabricio T. Ramos ◽  
Oscarlina L. dos S. Weber

ABSTRACT Soil carbon (C) stock determination can subsidize discussions on the continuity of an agricultural management. This study aimed to evaluate the stocks of total organic C (STOC) and labile C (SLC), and the indices of C lability (CLI), C compartment (CCI) and C management (CMI), and correlate them with chemical and physical attributes of a Red Yellow Latosol (Oxisol) managed for 38 years with different tillage systems in a Cerrado region of Mato Grosso, Brazil. Disturbed and undisturbed soil samples were collected in three layers (0-0.05, 0.05-0.10 and 0.10-0.20 m). The CMI (CLI x CCI) showed higher STOC possibly as the tillage depth decreased, because none of the tillage systems conserved STOC and SLC in the layers of 0-0.05 and 0.05-0.10 m, compared with the Native Cerrado, i.e., soil C conservation only occurred in the layer of 0.10-0.20 m. Although the percentage of SLC in STOC was lower, only SLC was correlated with soil chemical and physical attributes and, based on the multiple linear regression analysis, SLC was explained in 54% (R2) by the cation exchange capacity and soil micropores. Therefore, for monitoring purposes, the SLCestimated can be useful to evaluate soil C storage.


2011 ◽  
Vol 8 (8) ◽  
pp. 2195-2208 ◽  
Author(s):  
A. Kammer ◽  
F. Hagedorn

Abstract. Very few field studies have quantified the different pathways of C loss from decomposing litter even though the partitioning of C fluxes is essential to understand soil C dynamics. Using 0.75 kg m−2 of 13C-depleted leaf (δ13C = −40.8 ‰) and 2 kg m−2 of twig litter (δ13C = −38.4 ‰), we tracked the litter-derived C in soil CO2 effluxes, dissolved organic C (DOC), and soil organic matter of a beech forest in the Swiss Jura. Autotrophic respiration was reduced by trenching. Our results show that mineralisation was the main pathway of C loss from decomposing litter over 1 yr, amounting to 24 and 31 % of the added twig and leaf litter. Contrary to our expectations, the leaf litter C was mineralised only slightly (1.2 times) more rapidly than the twig litter C. The leaching of DOC from twigs amounted to half of that from leaves throughout the experiment (2 vs. 4 % of added litter C). Tracing the litter-derived DOC in the soil showed that DOC from both litter types was mostly removed (88–96 %) with passage through the top centimetres of the mineral soil (0–5 cm) where it might have been stabilised. In the soil organic C at 0–2 cm depth, we indeed recovered 4 % of the initial twig C and 8 % of the leaf C after 1 yr. Much of the 13C-depleted litter remained on the soil surface throughout the experiment: 60 % of the twig litter C and 25 % of the leaf litter C. From the gap in the 13C-mass balance based on C mineralisation, DOC leaching, C input into top soils, and remaining litter, we inferred that another 30 % of the leaf C but only 10 % of twig C could have been transported via soil fauna to soil depths below 2 cm. In summary, over 1 yr, twig litter was mineralised more rapidly relative to leaf litter than expected, and much less of the twig-derived C was transported to the mineral soil than of the leaf-derived C. Both findings provide some evidence that twig litter could contribute less to the C storage in these base-rich forest soils than leaf litter.


2010 ◽  
Vol 7 (2) ◽  
pp. 1575-1602 ◽  
Author(s):  
Y. Carrillo ◽  
E. Pendall ◽  
F. A. Dijkstra ◽  
J. A. Morgan ◽  
J. M. Newcomb

Abstract. Elevated CO2 generally increases soil C pools. However, greater available C concentrations can potentially stimulate soil organic matter (SOM) decomposition. The effects of climate warming on C storage can also be positive or negative. There is a high degree of uncertainty on the combined effects of climate warming and atmospheric CO2 increase on SOM dynamics and its potential feedbacks to climate change. Semi-arid systems are predicted to show strong ecosystem responses to both factors. Global change factors can have contrasting effects for different SOM pools, thus, to understand the mechanisms underlying the combined effects of multiple factors on soil C storage, effects on individual C pools and their kinetics should be evaluated. We assessed SOM dynamics by conducting long-term laboratory incubations of soils from PHACE (Prairie Heating and CO2 Enrichment experiment), an elevated CO2 and warming field experiment in semi-arid, native northern mixed grass prairie, Wyoming, USA. We measured total C mineralization and estimated the size of the labile pool and the decomposition rates of the labile and resistant SOM pools. To examine the role of plant inputs on SOM dynamics we measured aboveground biomass, root biomass, and soil dissolved organic C (DOC). Greater aboveground productivity under elevated CO2 translated into enlarged pools of readily available C (measured as total mineralized C, labile C pool and DOC). The effects of warming on the labile C only occurred in the first year of warming suggesting a transient effect of the microbial response to increased temperature. Experimental climate change affected the intrinsic decomposability of both the labile and resistant C pools. Positive relationships of the rate of decomposition of the resistant C with aboveground and belowground biomass and dissolved organic C suggested that plant inputs mediated the response by enhancing the degradability of the resistant C. Our results contribute to a growing body of literature suggesting that priming is a ubiquitous phenomenon that should be included in C cycle models.


Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 341 ◽  
Author(s):  
Anna E. Richards ◽  
Ram C. Dalal ◽  
Susanne Schmidt

Soil is a large sink for carbon (C), with the potential to significantly reduce the net increase in atmospheric CO2 concentration. However, we previously showed that subtropical tree plantations store less C into long-term soil pools than rainforest or pasture. To explore reasons for differences in C storage between different land-use systems, we examined the relationships between soil aggregation, iron and aluminium oxide and hydroxide content, and soil organic C (SOC) under exotic C4 pasture (Pennisetum clandestinum), native hoop pine (Araucaria cunninghamii) plantations, and rainforest. We measured SOC concentrations of water-stable and fully dispersed aggregates to assess the location of soil C. Concentrations of dithionite- and oxalate-extractable iron and aluminium were also determined to assess their role in SOC sequestration. Soil under rainforest and pasture contained more C in intra-aggregate particulate organic matter (iPOM, >53 μm) than hoop pine plantations, indicating that in rainforest and pasture, greater stabilisation of SOC occurred via soil aggregation. SOC was not significantly correlated with dithionite- and oxalate-extractable Fe and Al in these systems, indicating that sorption sites of Fe and Al oxides and hydroxides were saturated. We concluded that soil C under rainforest and pasture is stabilised by incorporation within soil aggregates, which results in greater storage of C in soil under pasture than plantations following land-use change. The reduced storage of C as iPOM in plantation soil contributes to the negative soil C budget of plantations compared with rainforest and pasture, even 63 years after establishment. The results have relevance for CO2 mitigation schemes based on tree plantations.


Author(s):  
Zhuangzhuang Qian ◽  
Xiaomin Ge ◽  
Yunxia Bai ◽  
Ye Tian ◽  
Shunyao Zhuang ◽  
...  

The main objective of this study was to compare the effects of two densities (278 stems·ha−1 with two spacings of 6 m × 6 m or 4.5 m × 8 m, 400 stems·ha−1 with two spacings of 5 m × 5 m or 3 m × 8 m) and three poplar clones (NL95, NL895, and NL797) on productivity and carbon (C) sequestration of poplar ecosystems. The results showed that planting density significantly affected the biomass of a single tree. The mean tree biomass of clone NL95 was higher in all spacings than that of the other clones, with a significant difference for the 6 m × 6 m spacing. The biomass of poplar trees ranged from 78.9 to 110.3 Mg·ha−1, with the highest tree biomass observed in the square configuration. Soil C concentration (0–100 cm) increased after 12 years of management. Soil C storage ranged from 138.1 to 164.3 Mg C·ha−1, and the highest soil C storage was in the NL797 poplar plantation with 6 m × 6 m spacing. Our results suggested that clones NL95 and NL797 should be chosen for planting, with a planting density of 278 stems·ha−1 and spacing of 6 m × 6 m.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 645 ◽  
Author(s):  
Ashfaq Ali ◽  
Adnan Ahmad ◽  
Kashif Akhtar ◽  
Mingjun Teng ◽  
Weisheng Zeng ◽  
...  

Masson pine (Pinus massoniana Lamb) has been planted extensively in different parts of China for timber production and habitat restoration. The effects of stand age and management of these plantations on biomass, carbon storage, and soil physicochemical properties are poorly understood. In this study, we investigated biomass, carbon storage, and soil physicochemical properties of Masson pine plantations. The plantations were divided into four age groups (9, 18, 28, and 48 years), and into managed (MS) and unmanaged stands (UMS) in Hubei province, Central China. Tree biomass increased with stand age. A growth model indicated that maximum tree growth occurred when the plantations were 17 years old, and the average growth rate occurred when plantations were 23 years old. Tree biomass in managed stands was 9.75% greater than that in unmanaged ones. Total biomass carbon was estimated at 27.4, 86.0, 112.7, and 142.2 Mg ha−1, whereas soil organic carbon was 116.4, 135.0, 147.4, and 138.1 Mg ha−1 in 9-, 18-, 28-, and 48-year-old plantations, respectively. Total carbon content was 122.6 and 106.5 Mg ha−1, whereas soil organic carbon content was 104.9 and 115.4 Mg ha−1 in MS and UMS, respectively. Total carbon storage in the plantations studied averaged 143.7, 220.4, 260.1, and 280.3 Mg ha−1 in 9-,18-, 28-, and 48-year-old stands, and 227.3 and 222.4 Mg ha−1 in MS and UMS, respectively. The results of our study provide a sound basis for estimating ecosystem carbon as it relates to forest management activity and stand age.


Sign in / Sign up

Export Citation Format

Share Document