scholarly journals AGROECOSYSTEMS TO DECREASE DIFFUSE NITROGEN POLLUTION IN NORTHERN LITHUANIA

Author(s):  
Laura Masilionytė ◽  
Stanislava Maikštėnienė ◽  
Aleksandras Velykis ◽  
Antanas Satkus

The paper presents the research conducted at the Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry on a clay loam Gleyic Cambisol during the period of 2006–2010. The research investigated the changes of mineral nitrogen in soil growing catch crops during the winter wheat post-harvest period and incorporating their biomass into the soil for green manure. Green manure implications for environmental sustainability were assessed. The studies were carried out in the soil with a low (1.90–2.00%) and moderate (2.10–2.40%) humus content in organic and sustainable cropping systems. The crop rotation, expanded in time and space, consisted of red clover (Trifolium pretense L.) → winter wheat (Triticum aestivum L.) → field pea (Pisum sativum L.) → spring barley (Hordeum vulgare L.) with undersown red clover. Investigations of mineral nitrogen migration were assessed in the crop rotation sequence: winter wheat + catch crops → field pea. Higher organic matter and nitrogen content in the biomass of catch crops were accumulated when Brassisaceae (white mustard, Sinapis alba L.) was grown in a mixture with buckwheat (Fagopyrum esculentum Moench.) or as a sole crop, compared with oilseed radish (Raphanus sativus var. Oleiferus Metzg.) grown with the long-day legume plants blue lupine (Lupinus angustifolius L.). Mineral nitrogen concentration in soil depended on soil humus status, cropping system and catch crop characteristics. In late autumn there was significantly higher mineral nitrogen concentration in the soil with moderate humus content, compared with soil with low humus content. The lowest mineral nitrogen concentration in late autumn in the 0–40 cm soil layer and lower risk of leaching into deeper layers was measured using organic cropping systems with catch crops. The highest mineral nitrogen concentration was recorded in the sustainable cropping system when mineral nitrogen fertilizer (N30) was applied for winter wheat straw decomposition. In the organic cropping system, the incorporation of catch crop biomass into soil resulted in higher mineral nitrogen reserves in soil in spring than in the sustainable cropping system, (mineral nitrogen fertilizer (N30) applied for straw decomposition in autumn and no catch crop grown). Applying organic cropping systems with catch crops is an efficient tool to promote environmental sustainability.

2012 ◽  
Vol 151 (2) ◽  
pp. 247-267 ◽  
Author(s):  
N. COLBACH ◽  
S. GRANGER ◽  
D. MÉZIÈRE

SUMMARYBoth scientists and farmers are confronted by a similar question: which current and past cropping system components will influence the present weed flora, and how? This information is necessary to optimize both cropping systems for weed control, and quality and cost in surveys and monitoring schemes. The present study addressed these questions with a sensitivity analysis to input variables of a cropping system model,AlomySys, that predicts weed dynamics in interaction with pedo-climatic conditions. The study ranked cropping system components according to their impact on weed infestation in winter wheat, showing for instance that though crop succession was crucial, current and past tillage strategies influenced grass weed densities even more. Crops were not only ranked as a function of the resulting weed risk but the latter was also linked to crop species traits, i.e. crop type, usual sowing period and emergence speed. A previous winterv.spring crop thus increased weed density by 72% in the following winter wheat; a late-sownv.early sown winter crop by 26%, a slowv.fast-emerging winter crop by 17%, and a lower competitive ability by 9%. Similarly, the characteristics of each crop management technique (tillage, catch crop, secondary crop, mowing, mechanical weeding, herbicides, nitrogen fertilizer, manure and harvest) were quantified. For instance, the timing of the first tillage operation was crucial prior to the analysed winter wheat crop while the choice of the tool used even 5 years previously still influenced weed infestation in the current year; a catch crop prior to previous spring sown crops reduced the current infestation regardless of catch crop sowing dates and densities, but the reductive effect could be lost if the field was tilled several times to destroy the catch crop. The advice synthesized here and in a companion paper (Colbach & Mézière 2012). will be valuable to design innovative, integrated cropping systems, indicating (1) which cropping system components to modify to produce the largest effect, (2) for how long past practices must be considered when choosing current options and (3) the optimal options for the different management techniques. Points (1) and (2) are also valuable to identify data to record in surveys, though still resulting in a total of 232 variables. In a second step, these detailed variables were therefore simplified and aggregated to determine a smaller set of 22 synthetic variables easily recorded in surveys, such as the proportion of winter and spring crops during the last 10 years (instead of the actual crop sequence), the proportion of crops sown in summer, early autumn, late autumn, early spring and late spring during the last 5 years (instead of exact sowing dates), the ploughing frequency (instead of ploughing dates and characteristics), the mean number of herbicide sprayings per year (instead of dates), etc. This reduced survey list will reduce the cost of surveys as well as increase the number and quality of surveys as more farmers will be ready to participate and there will be fewer uncertainties in the answers.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 58 ◽  
Author(s):  
P. Jiao ◽  
D. Xu ◽  
S. Wang ◽  
Y. Wang ◽  
K. Liu ◽  
...  

Reducing nitrogen (N) loss from agricultural soils as surface runoff is essential to prevent surface water contamination. The objective of 3-year study, 2007–09, was to evaluate surface runoff and N loss from different cropping systems. There were four treatments, including one single-crop cropping system with winter wheat (Triticum aestivum L.) followed by summer fallow (wheat/fallow), and three double-cropping systems: winter wheat/corn (Zea mays L.), wheat/cotton (Gossypium hirsutum L.), and wheat/soybean (Glycine max L. Merrill). The wheat/fallow received no fertiliser in the summer fallow period. The four cropping systems were randomly assigned to 12 plots of 5 m by 2 m on a silty clay soil. Lower runoff was found in the three double-cropping systems than the wheat/fallow, with the lowest runoff from the wheat/soybean. The three double-cropping systems also substantially reduced losses of ammonium-N (NH4+-N), nitrate-N (NO3–-N), dissolved N (DN), and total N (TN) compared with the wheat/fallow. Among the three double-cropping systems, the highest losses of NO3–-N, DN, and TN were from the wheat/cotton, and the lowest losses were from the wheat/soybean. However, the wheat/soybean increased NO3–-N and DN concentrations compared with wheat/fallow. The losses in peak events accounted for >64% for NH4+-N, 58% for NO3–-N, and 41% for DN of the total losses occurring during the 3-year experimental period, suggesting that peak N-loss events should be focussed on for the control of N loss as surface runoff from agricultural fields.


2004 ◽  
Vol 44 (3) ◽  
pp. 321 ◽  
Author(s):  
M. A. Foale ◽  
M. E. Probert ◽  
P. S. Carberry ◽  
D. Lack ◽  
S. Yeates ◽  
...  

Collaboration of researchers and service-providers with farmers in addressing crop and soil management, using on-farm experiments and cropping system simulation, was negotiated in 2 districts in Central Queensland, Australia. The 2 most influential variables affecting crop productivity in this region (soil water and mineral nitrogen contents) and the growth of sown crops, were monitored and simulated for 3 years beginning in December 1992. Periodic soil sampling of large experimental strips on 3 farms, from paddocks that differed in cropping history and soil properties, provided robust datasets of change, over time, of soil water and mineral nitrogen status. Farmers participated in twice-yearly discussions with researchers, informed by the accumulating data, which influenced thinking about soil behaviour and possible new management strategies. As the study period coincided with a prolonged drought, so that cropping opportunities were few, the objectives of the work were modified to concentrate almost exclusively on the soil variables.The contribution of the Agricultural Production Systems Simulator, which was used to simulate the measured changes in soil water and mineral nitrogen, was found by all participants to be useful. The APSIM output generally demonstrated close correspondence with field observations, which raised confidence in its applicability to local cropping systems. Exploration of hypothetical situations of interest to farmer participants, in the form of what-if scenarios, provided insights into the behaviour of the production system for a range of soil and seasonal conditions. The informed speculation of the simulator became a substitute for the farmers' own, more tentative, efforts.The regular participative review sessions proved to be highly effective in stimulating the learning of both farmers and researchers. The farmers were able to feel comfortable as owners of the collaborative experiments and custodians of the learning environment. Clear evidence for the ongoing learning of these farmers appeared in post-collaboration practices and experiences.


2017 ◽  
Vol 8 (2) ◽  
pp. 364-367 ◽  
Author(s):  
L. Zhou ◽  
G. Chen ◽  
Y. Miao ◽  
H. Zhang ◽  
Z. Chen ◽  
...  

The objective of this study was to evaluate the performance of a Crop Circle sensor-based precision nitrogen (N) management (PNM) strategy in different winter wheat cropping systems under on-farm conditions in North China Plain (NCP). Four farmer’s fields were selected for on-farm experiments in Laoling County, Shandong Province of NCP in 2015-2016. In each field, the PNM strategy was evaluated in two winter wheat cropping systems: farmer’s conventional management (FCM) and regional optimum crop management (ROCM). In each cropping system, there were two N management strategies: 1) FCM or ROCM; 2) PNM. The results indicated that the PNM strategy significantly increased partial factor productivity (PFP) by 29% in the FCM system, but did not have any significant improvement in the ROCM system. The ROCM system, using either regional optimum N management or PNM, significantly increased both grain yield and PFP than the FCM system.


2020 ◽  
Vol 12 (11) ◽  
pp. 4588
Author(s):  
Huanyuan Wang ◽  
Baoguo Li ◽  
Liang Jin ◽  
Kelin Hu

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.


Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 730-734 ◽  
Author(s):  
Loren J. Moshier ◽  
Oliver G. Russ ◽  
Joseph P. O'Connor ◽  
Mark M. Claassen

A 3-yr experiment and a 1-yr experiment in continuous winter wheat (Triticum aestivumL. ‘Newton’) and two 3-yr experiments in continuous grain sorghum [Sorghum bicolorL. (Moench.) ‘Co-op SG-10’ or ‘DeKalb DX-42Y’] were conducted to evaluate selected foliage-applied herbicides for control of honeyvine milkweed [Ampelamus albidus(Nutt.) Britt # AMPAL]. Glyphosate [N-(phosphonomethyl)-glycine] applied at 3.4 kg ae/ha, glyphosate plus dicamba (3,6-dichloro-2-methoxybenzoic acid) applied at 1.7 plus 0.6 kg ae/ha, and glyphosate plus 2,4-D [(2,4-dichlorophenoxy)acetic acid] applied at 1.7 plus 1.1 kg ae/ha in summer between harvesting and planting winter wheat and in spring prior to planting grain sorghum effectively reduced honeyvine milkweed regrowth 1 yr after initial application in both cropping systems. One or two additional annual applications did not provide complete control in either cropping system. Applications of 2,4-D at 2.2 kg ae/ha dicamba at 1.1 kg ae/ha and 2,4-D plus dicamba at 1.1 plus 0.6 kg ae/ha were effective if applied consecutively for 3 yr in continuous winter wheat but not in continuous grain sorghum.


Author(s):  
Magdaléna Lacko-Bartošová ◽  
Lucia Lacko-Bartošová ◽  
Petr Konvalina

The objective of this study was to evaluate the effect of cropping systems [integrated (INT) vs. organic (ORG)] and plant nutrition sources (synthetic in INT vs. approved organic in ORG) on analytical and rheological quality traits of winter wheat and its productivity. The results after 16 years of field experiments were evaluated. Pre-crop for winter wheat was N-fixing crop. Grain yield of winter wheat (6.8 t ha<sup>–1</sup> in INT, 6.5 t ha<sup>–1</sup> in ORG) did not differ significantly, while plant nutrition sources had an equal and positive effect on the yield. Crude protein quantity was higher in INT system by about 0.2%. The farinograph dough development time and dough stability were the longest for ORG and fertilised treatments. Mixolab quality indicators showed a clear distinction between ORG and INT systems and fertilisation in the protein and starch characteristics of the grain. The ORG reported longer Mixolab stability of the dough, mainly on fertilised treatment (8.8 min). Starch characteristics – torque C4 (amylolytic activity) and torque C5 (starch retrogradation) were higher for ORG system. Torque C2, protein weakening, was not affected by the cropping system. ORG system has the potential to achieve consistent, high-quality yields with significantly lower reliance on external inputs.


Sign in / Sign up

Export Citation Format

Share Document