Effects of soil structural properties on saturated hydraulic conductivity under different land-use types

Soil Research ◽  
2014 ◽  
Vol 52 (4) ◽  
pp. 340 ◽  
Author(s):  
Yanli Jiang ◽  
Ming'an Shao

Soil structure has important influences on edaphic conditions and environment, is often related to aggregate stability. The saturated hydraulic conductivity (Ks) is an important soil hydraulic property that affects water flow and transport of dissolved solutes. The objective of this study was to analyse the impact of water-stable aggregate stability on Ks under different land-use types. Using a range of aggregate stabilities in disturbed soil columns, Ks was measured and relationships between the mean weight diameter (MWD) of aggregates and Ks for three different conditions (three soil layers, four land use types, two water supply methods) were determined. Differences between soil aggregate characteristics and organic matter content among the land use types were significant. Using both both top and bottom water supply methods, MWD was related to Ks by a non-linear function (coefficient of determination >0.95), and land-use type and water supply method were significant factors. When undisturbed soil columns were investigated, the relationship between MWD and Ks was obscured by other soil environmental factors.

2004 ◽  
Vol 84 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Osama K. Nusier

Due to its high organic matter content, peatmoss can be highly beneficial to agricultural soil. In this research, the impact of varying organic matter contents at different compaction efforts on water retention, saturated hydraulic conductivity, and modulus of rupture of three soils (sandy loam, clay loam, and clay) has been investigated under laboratory conditions. Compaction changed the ability of the soils to hold water, increased modulus of rupture, and decreased the plant-available water-holding capacity of the soils. On the other hand, organic matter generally increased the ability of the soils to hold water, expanded the available water capacity, and decreased the modulus of rupture of compacted soils. Key words: Peatmoss, water retention, saturated hydraulic conductivity, modulus of rupture


2019 ◽  
pp. 1-11
Author(s):  
Henry Oppong Tuffour ◽  
Awudu Abubakari ◽  
Alex Amerh Agbeshie ◽  
Abdul Aziz Khalid ◽  
Erasmus Narteh Tetteh ◽  
...  

Aims: Direct methods of measuring saturated hydraulic conductivity (Ks), either in situ or in the laboratory, are time consuming and very expensive. Several Pedotransfer functions (PTFs) are available for estimating Ks, with each having its own limitations. In this study, the performances of four popular PTFs were evaluated on different soil classes in the semi deciduous zone of Ghana. The PTFs considered herein were Puckett et al. (1985), Campbell and Shiozawa (1994), Dane and Puckett (1994), and Ferrer-Julià et al. (2004). In addition, five local data derived PTFs were used to study the possibility of using local datasets to validate PTF accuracy. Materials and Methods: A total of 450 undisturbed soil cores were collected from the 0 – 15 cm depth from three benchmark soils, namely, Stagni-Dystric Gleysol (SDG), Plinthi Ferric Acrisol (PFA) and Plinthic Acrisol (PA). The Ks of samples were measured by the falling-head permeameter method in the laboratory. Sand, silt and clay fractions, bulk density, organic matter content, and exchangeable calcium and sodium were measured and used as input parameters for the newly derived PTFs. Accuracy and reliability of the predictions were evaluated by the root mean square error (RMSE), coefficient of correlation (r), index of agreement (d), and the Nash-Sutcliffe efficiency (NSE) between the measured and predicted values from both tested and newly derived PTFs. The relative improvement (RI) of the newly derived PTFs from this study over the existing ones were also evaluated. Results: The newly derived PTFs in this study had higher prediction accuracy with r, d, RMSE and NSE ranging from 0.80 – 0.99, 0.79 – 0.94, 0.14 – 1.74 and 0.84 – 0.98, respectively, compared with 0.32 – 0.45, 0.27 – 0.50, 4.00 – 4.90 and 0.41 – 0.47 for the tested PTFs. The relative improvement of the newly derived over the tested PTFs ranged from 56.50 – 95.71% in the SDG, 70.73 – 96.89% in the PFA, and 65.37 – 95.81% in the PA. Generally, RI was observed to be highest for Model 1 in the SDG, and Model 4 in both PFA and PA, and lowest for Model 5 in all three soils. It was observed that the inclusion of exchangeable calcium and sodium as predictors increased the predictability of the newly derived PTFs.


2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


2021 ◽  
Vol 295 ◽  
pp. 113143
Author(s):  
Yudi Yan ◽  
Seyyed Ali Akbar Nakhli ◽  
Jing Jin ◽  
Godfrey Mills ◽  
Clinton S. Willson ◽  
...  

Water Policy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Huiqing Han ◽  
Yuxiang Dong

Water supply is an important freshwater ecosystem service provided by ecosystems. Water shortages resulting from spatio-temporal heterogeneity of climate condition or human activities present serious problems in the Guizhou Province of southwest China. This study aimed to analyze the spatio-temporal changes of water supply service using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, explore how climate and land-use changes impact water supply provision, and discuss the impact of parameters associated with climate and land-use in the InVEST model on water supply in the region. We used data and the model to forecast trends for the year 2030 and found that water supply has been declining in the region at the watershed scale since 1990. Climate and land-use change played important roles in affecting the water supply. Water supply was overwhelmingly driven by the reference evapotranspiration and annual average precipitation, while the plant evapotranspiration coefficients for each land-use type had a relatively small effect. The method for sensitivity analysis developed in this study allowed exploration of the relative importance of parameters in the InVEST water yield model. The Grain-for-Green project, afforestation, and urban expansion control should be accelerated in this region to protect the water supply.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Syafrimen Yasin ◽  
Gusnidar Gusnidar ◽  
Dedy Iskandar

A research conducted in Sungai Rumbai, Dharmasraya Regency and in Soil Laboratory Andalas university was aimed to evaluate soil fertility status on the depth below 0-20 cm from several land use types , especially under Mixed Garden and annual cultivated dryland soil.  Soil samples were taken on Ultisol at 0-8% slope (late-waving soil surface).  Land use types evaluated were forest, annual cultivated dryland, bush land, rangeland covered by Imperata cylindrica and mixed garden.  Composite soil samples for soil chemical analysis were taken on the 0-20 cm soil depth with four replications, and 5 drillings for each replication.  Undisturbed soil samples by using sample ring were used to analyze sol bulk volume.  The data resulted were compared to the criteria and were statistically tested using Analysis of Variance and then were continued by LSD at 5% level.  From the results of analyses could be concluded that land use  for mixed garden had the higher Organic Carbon (OC) content and the lower bulk volume (BV) than those for annual cultivated dryland soil.Key Words: Degradasi Lahan, Kebun Campuran, Tegalan


2019 ◽  
Author(s):  
Fayong Li ◽  
Xinqiang Liang ◽  
Hua Li ◽  
Yingbin Jin ◽  
Junwei Jin ◽  
...  

Abstract Background Colloid-facilitated phosphorus (P) transport is a recognized important pathway for soil P loss in agricultural systems, but limited information is available on the soil aggregate-associated colloidal P. To elucidate the effects of aggregate size on the loss potential of colloidal P (P coll ) in agricultural systems, soils (0-20 cm depth) from six land use types were sampled in Zhejiang province in the Yangtz river delta region, China. The aggregate size fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and <0.053 mm) separated by wet-sieving method were analyzed.Results Results showed that the 0.26–2 mm small macroaggregates had the highest total P (TP) content. For acidic soils, the highest P coll content was also found in the 0.26–2 mm aggregate size, while the lowest was found in the <0.053 mm (silt+clay)-sized particles, the opposite of that found in alkaline soils. Paddy soils contained less P coll than other land use types. The P coll in total dissolved P (TDP) was dominated by <0.053 mm (silt+clay)-sized particles. Aggregate size did strongly influence the loss potential of P coll in paddy soils, where P coll contributed up to 83% TDP in the silt+clay sized particles. The P coll content was positively correlated with TP, Al, Fe and mean weight diameter (MWD). Aggregate associated total carbon (TC), total nitrogen (TN), C/P, and C/N had significant, but negative effects on the contribution of P coll to potential soil P losses. The P coll content of the aggregates was controlled by aggregate associated TP and Al content as well as soil pH value, with P coll loss potential from aggregates being controlled by its organic matter content.Conclusion Therefore, we conclude that management practices that increase soil aggregate stability or its organic carbon content will limit P coll loss from agricultural systems.


Geologos ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Anna Kuczyńska

Abstract The present paper discusses the results of an analysis of the impact of land use on the distribution of pharmaceuticals in groundwater samples collected during a pilot study of the contents of pharmaceuticals and hormones in ground-water taken from the national groundwater monitoring network of the Polish Geological Institute - National Research Institute. Samples were collected during monitoring campaigns from 160 groundwater monitoring sites in various land use types in 2016 and 2017. Samples were analysed for a total of 34 active substances, including natural and synthetic oestrogen hormones, cardiovascular and respiratory medications, analgesics and anti-inflammatories, antidepressants, antimicrobial drugs and anti-epileptics. Our study confirmed the presence of pharmaceuticals in 53 per cent of ground-water samples taken. Data show variations in the distribution of pharmaceuticals depending on land use type, which can thus be employed in pressure analysis and identification of sources of pollution.


2019 ◽  
Vol 71 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Rainer Horn ◽  
Anneka Mordhorst ◽  
Heiner Fleige ◽  
Iris Zimmermann ◽  
Bernd Burbaum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document