Do elevated CO2 and temperature affect organic nitrogen fractions and enzyme activities in soil under rice crop?

Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 400
Author(s):  
Partha Pratim Maity ◽  
B. Chakrabarti ◽  
T. J. Purakayastha ◽  
A. Bhatia ◽  
Namita Das Saha ◽  
...  

A study was conducted to quantify the effect of elevated carbon dioxide (CO2) and temperature on soil organic nitrogen (N) fractions and enzyme activities in rice rhizosphere. Rice crop was grown inside the open top chambers in the ICAR-Indian Agricultural Research Institute. The N was applied in four different doses. Grain yield and aboveground N uptake by rice significantly reduced under elevated temperature. However, elevated CO2 along with elevated temperature was able to compensate this loss. Principal component analysis clearly indicated that microbial biomass carbon, microbial biomass N, amino acid N, total hydrolysable N, ammonia N and serine–threonine N contributed significantly to rice grain yield. Combined effect of elevated CO2 and elevated temperature decreased the total hydrolysable N, especially for lower N doses. The N-acetyl-glucosaminidase and leucine aminopeptidase enzyme activities were negatively correlated with the organic N pools. Higher activities of these enzymes under limited N supply may accelerate the decomposition of organic N in soil. When N was applied in super-optimal dose, plant N demand was met thereby causing lesser depletion of total hydrolysable N. Better nitrogen management will alleviate faster depletion of native soil N under future scenario of climate change and thus might cause N sequestration in soil.


HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 537-546
Author(s):  
Pengpeng Duan ◽  
Ying Sun ◽  
Yuling Zhang ◽  
Qingfeng Fan ◽  
Na Yu ◽  
...  

A greenhouse field experiment involving tomato (Solanum lycopersicum) was performed using different nitrogen (N) management regimes: sole application of differing rates of chemical N fertilizer (SC) (SC treatments: N0, N1, N2, and N3) and combined application of manure and chemical N fertilizer (MC) (MC treatments: MN0, MN1, MN2, and MN3). These were used to understand the relationship between comprehensive fruit composition, yield, and N fractions (soil mineral N; soil soluble organic N; soil microbial biomass N, and soil fixed ammonium) under greenhouse conditions. The results showed that the MC treatments significantly increased vitamin C and soluble sugar content compared with SC treatments. In addition, the MN2 treatment produced a high yield and had a positive effect on fruit composition. The N3 (563 kg N/ha) and MN3 (796 kg N/ha) treatments resulted in a high loss of N below the root zone (0–30 cm), consequently reducing N use efficiency. Soil mineral N, soil soluble organic N, and soil fixed ammonium tended to be higher during the first fruiting period, whereas soil microbial biomass N tended to be higher during the second fruiting period. MC treatments significantly increased the N fraction in the 0- to 30-cm soil layer; N fractions tended to be higher with the MN2 treatment. According to an optimum regression equation, soil fixed ammonium during the first fruiting period and soil microbial biomass N during the second fruiting period had a more significant influence on tomato yield and fruit composition. Overall, application MC at an appropriate rate (MN2: 608 kg N/ha) is a promising approach to achieving high yields and optimum taste, and it offers a more sustainable fertilizer management strategy compared with chemical N fertilization.



1968 ◽  
Vol 4 (3) ◽  
pp. 193-201 ◽  
Author(s):  
I. S. Cornforth

SummaryThe effect of four crops of maize on the distribution of organic nitrogen in ten West Indian soils, given either lime, P, K, Mg and trace elements or no fertilizers, was studied in a greenhouse experiment. The soils were also analysed for ‘available N’ by incubation and chemical methods. Variations in the redistribution of organic N fractions during the greenhouse experiment did not permit conclusions to be drawn on the source of N used by the maize, although the amount of hydrolysable N, particularly hexosamine, amino and hydroxy-amino N, in the initial samples was closely related to N uptake. Part of the chemically stable, non-hydrolysable organic N was broken down by soil organisms during the experiment; this was increased by liming acid soils.



Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1134
Author(s):  
Jie Zhang ◽  
Ping He ◽  
Dan Wei ◽  
Liang Jin ◽  
Lijuan Zhang ◽  
...  

A maize pot experiment was conducted to compare the difference of N distribution between bulk and rhizospheric soil after chemical fertilizer with or without soil straw amendment at an equivalent N rate using a 15N cross-labeling technique. Soil N pools, maize N and their 15N abundances were determined during maize growth. The urea plus straw treatment significantly (p < 0.05) increased the recovery of urea N in soil and 26.0% of straw N was assimilated by maize. Compared with urea treatment in bulk soil, urea plus straw treatment significantly (p < 0.05) increased the concentration and percentage of applied N as dissolved organic N (DON) and microbial biomass N (MBN) from milk stage to maturity, increased those as particulate organic N (PON) and mineral associated total N (MTN) throughout maize growth and decreased those as inorganic N (Inorg-N) from the eighth leaf to the silking stage. Compared with bulk soil, rhizospheric soil significantly (p < 0.05) decreased the concentration and percentage of applied N as PON and increased those as Inorg-N and MTN in both applied N treatments from the silking stage, and significantly (p < 0.05) decreased the concentration and percentage of applied N as microbial biomass N (MBN) in the urea plus straw treatment. Overall, straw N was an important N source and combined application of chemical fertilizer with straw increased soil fertility, with the rhizosphere regulating the transformation and supply of different N sources in the soil–crop system.



Author(s):  
John Bako Baon

An indicator needed for estimating the presence of response of cocoa (Theobroma cacao) trees to nitrogen (N) fertilizer has been well understood, however there is still little progress on the work on identification of organic N fraction which regulates the response of cocoa to N fertilizer. The objective of this study is to identify a fraction of soil organic N which is very closely related with degree of cocoa response to N fertilizer. Hydrolyses were performed on soil samples derived from 23 sites of cocoa plantations distributed both in Banyuwangi district (12 sites) and in Jember district (11 sites). Analysis of organic N fractions consisted of total hydrolysable N, ammonium N, amino sugar N, amino acid N and combinations of those fractions. To investigate the level of cocoa plants response to N fertilizer, seedlings of cocoa were planted in plastic pots treated with and without urea as source of N. Degree of response of cocoa plants to N fertilizer was measured based on growth parameters, such as plant height, leaf number, stem girth, fresh weight of stem, leaf and shoot; and dry weight of stem, leaf and shoot. Results of this study showed that biggest response of cocoa was shown by dry weight of leaf at the level of 29,22% (in the range of -17,43% – 95,98%), whereas the smallest response was shown by stem dry weight at the level of -1,04 (in the range of -26,16 – 47,54). From those of organic N fractions analyzed, only N ammonium did not show any significant correlations with all the growth parameters observed. Leaf dry weight was the most closely related parameter with nearly all organic N fractions followed by shoot dry weight and stem girth. The soil organic N fraction which had very significant relation with cocoa plant response was total hydrolysable N. Using the method of Cate-Nelson, it was revealed that cocoa gardens contain total hydrolysable N less than 1273 mg/kg were classified as responsive to N fertilizer.Key words: plant response, Theobroma cacao, soil organic nitrogen, N fertilizer, soil testing, fertilization, soil variability, soil hydrolysis



MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 499-506
Author(s):  
VED PRAKASH ◽  
S. K. DWIVEDI ◽  
SANTOSH KUMAR ◽  
J. S. MISHRA ◽  
K. K. RAO ◽  
...  

The atmospheric CO2 will be in the range of 510 to 760 L-1 by the end of 21st century and mean global temperature will be 1.5 to 4.5 oC higher than the present day which has a direct and indirect effect on agriculture. India is a key global region vulnerable to climate change; however, limited studies have focused on the combine effect of CO2 enrichment and temperature on wheat production in Sub-humid climate of eastern IGP in India. To address this issue, an Open top chamber (OTCs) experiment was conducted during 2013-14, to determine the effects of elevated atmospheric carbon dioxide (CO2) and temperature on growth, yield attributes and yield of wheat. Wheat cultivars (DBW 14 and HD 2967) were grown with four treatment combination of CO2 and temperature in OTCs, during the rabi season. The study revealed that wheat genotypes performed better under elevated CO2 condition in term of grain number, test weight and grain yield than an ambient condition. The greater biomass under elevated CO2 was brought about by an increase in radiation use efficiency (RUE) during both heading and physiological maturity periods. Elevated temperature decreased the grain yield but increase plant height compared to ambient temperature. Days to physiological maturity was reduced by 4 to 7 days in both the cultivars under elevated temperature condition and increased by 3 to 4 days under the elevated CO2 condition with respect to ambient condition. The elevated CO2 had positive effects whereas elevated temperature had negative effects on growth, yield attributes and yield of wheat. With elevation of both CO2 and temperature, elevated CO2 compensate the negative effects of elevated temperature on growth, yield attributes and yield of wheat.  



2021 ◽  
Vol 22 (2) ◽  
pp. 109-115
Author(s):  
PARISHMITA DAS ◽  
R. L. DEKA ◽  
J. GOSWAMI ◽  
SMRITA BARUA

A pot experiment was conducted during kharif, 2018 inside CO2 Temperature Gradient Tunnels (CTGT) to assess the effect of elevated CO2 and temperature [T0: ambient temperature & ambient CO2, T1: elevated temperature (ambient +1°C) & elevated CO2 (ambient+25% of ambient) and T2: elevated temperature (ambient +2°C) & elevated CO2 (ambient + 50% of ambient)] under three different transplanting dates (D1: 25th June, D2: 10th July and D3: 25th July) on growth and yield of rice in Jorhat district of Assam. The result showed that occurrence of different phenological stages was earlier under elevated CO2-Temperature conditions resulting in reduction of crop duration by about 8-15 days. On the other hand,days to tiller initiation increased whereas days to panicle initiation, flowering and physiological maturity reduced with delay in transplanting. Yield attributing parameters were improved under elevated CO2-Temperature condition. With respect to dates of transplanting, D2 recorded higher number of panicles hill-1 (17.9) and higher filled grains panicle-1 (156.6). Higher grain yield (55.9g hill-1) was found under T2 which was at par with T1 and it was significant higher over the ambient. Grain yield was significantly reduced when transplanting was delayed after 10th July. The results revealed that the growth and yield of rice was found to be better under elevated CO2-temperature levels when transplanted on 10th July.





Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 258
Author(s):  
Chengliang Wang ◽  
Baoku Shi ◽  
Wei Sun ◽  
Qingcheng Guan

The effects of mixed inorganic and organic nitrogen (N) addition on soil enzyme activities and the underlying mechanism remain unclear, especially in complex field conditions. We conducted a mesocosm experiment with two rates of N addition (10 and 20 g N m–2 year–1) and four ratios of N addition (inorganic N:organic N = 10:0, 7:3, 3:7 and 1:9) and measured enzyme activities, soil physicochemical properties, microbial biomass and vegetation indicators. Generally, soil enzyme activities involved in carbon (C), N and phosphorus cycling increased with the increase of N addition rate. Compared to the single inorganic N addition treatment, enzyme activities were highest under mixed N addition treatments, especially medium organic N addition. The variations in soil enzyme activities across different treatments were tightly linked to the soil microbial biomass C, dissolved organic C and soil pH. These findings provide a good understanding of the response trends of soil hydrolytic enzyme activities in a meadow steppe to changes in N deposition rate and form.



Sign in / Sign up

Export Citation Format

Share Document