scholarly journals Changes in Nitrogen Pools in the Maize—Soil System after Urea or Straw Application to a Typical Intensive Agricultural Soil: A 15N Tracer Study

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1134
Author(s):  
Jie Zhang ◽  
Ping He ◽  
Dan Wei ◽  
Liang Jin ◽  
Lijuan Zhang ◽  
...  

A maize pot experiment was conducted to compare the difference of N distribution between bulk and rhizospheric soil after chemical fertilizer with or without soil straw amendment at an equivalent N rate using a 15N cross-labeling technique. Soil N pools, maize N and their 15N abundances were determined during maize growth. The urea plus straw treatment significantly (p < 0.05) increased the recovery of urea N in soil and 26.0% of straw N was assimilated by maize. Compared with urea treatment in bulk soil, urea plus straw treatment significantly (p < 0.05) increased the concentration and percentage of applied N as dissolved organic N (DON) and microbial biomass N (MBN) from milk stage to maturity, increased those as particulate organic N (PON) and mineral associated total N (MTN) throughout maize growth and decreased those as inorganic N (Inorg-N) from the eighth leaf to the silking stage. Compared with bulk soil, rhizospheric soil significantly (p < 0.05) decreased the concentration and percentage of applied N as PON and increased those as Inorg-N and MTN in both applied N treatments from the silking stage, and significantly (p < 0.05) decreased the concentration and percentage of applied N as microbial biomass N (MBN) in the urea plus straw treatment. Overall, straw N was an important N source and combined application of chemical fertilizer with straw increased soil fertility, with the rhizosphere regulating the transformation and supply of different N sources in the soil–crop system.

2020 ◽  
Author(s):  
Jie Zhang ◽  
Ping He ◽  
Dan Wei ◽  
Liang Jin ◽  
Lijuan Zhang ◽  
...  

AbstractA 15N maize pot experiment was conducted to compare the N value of fertilizer alone and fertilizer combined with straw at an equivalent N rate. The four treatments were control (CK), 15N-urea, 15N-urea plus straw, and 15N-straw plus urea. Soil N pools, maize N and their 15N abundance were determined during maize growth. At maturity 26.0% of straw N was assimilated by maize in the urea plus straw treatment. From the eighth leaf stage to maturity, urea plus straw had a significantly (P < 0.05) higher concentration and percentage of exogenous substrate N present as soil total N (TN), particulate organic N (PON), and mineral associated total N (MTN) in bulk and rhizosphere soils than the urea-only treatment. From silking to maturity in the urea plus straw treatment, rhizosphere soil significantly (P < 0.05) increased the percentage of exogenous substrate N present as inorganic N (Inorg-N) and MTN, and significantly (P < 0.05) decreased that present as PON and microbial biomass N (MBN) compared with the bulk soil. From the eighth leaf stage to maturity, rhizosphere soil significantly (P < 0.05) increased the percentage of straw N present as Inorg-N and MTN except for MTN at the silking stage, and significantly decreased (P < 0.05) that present as PON compared with the bulk soil. Overall, straw was an available N source to the crop, and the increase in straw N availability needs to be considered from the interaction of fertilization practices and the crop rhizosphere.


HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 537-546
Author(s):  
Pengpeng Duan ◽  
Ying Sun ◽  
Yuling Zhang ◽  
Qingfeng Fan ◽  
Na Yu ◽  
...  

A greenhouse field experiment involving tomato (Solanum lycopersicum) was performed using different nitrogen (N) management regimes: sole application of differing rates of chemical N fertilizer (SC) (SC treatments: N0, N1, N2, and N3) and combined application of manure and chemical N fertilizer (MC) (MC treatments: MN0, MN1, MN2, and MN3). These were used to understand the relationship between comprehensive fruit composition, yield, and N fractions (soil mineral N; soil soluble organic N; soil microbial biomass N, and soil fixed ammonium) under greenhouse conditions. The results showed that the MC treatments significantly increased vitamin C and soluble sugar content compared with SC treatments. In addition, the MN2 treatment produced a high yield and had a positive effect on fruit composition. The N3 (563 kg N/ha) and MN3 (796 kg N/ha) treatments resulted in a high loss of N below the root zone (0–30 cm), consequently reducing N use efficiency. Soil mineral N, soil soluble organic N, and soil fixed ammonium tended to be higher during the first fruiting period, whereas soil microbial biomass N tended to be higher during the second fruiting period. MC treatments significantly increased the N fraction in the 0- to 30-cm soil layer; N fractions tended to be higher with the MN2 treatment. According to an optimum regression equation, soil fixed ammonium during the first fruiting period and soil microbial biomass N during the second fruiting period had a more significant influence on tomato yield and fruit composition. Overall, application MC at an appropriate rate (MN2: 608 kg N/ha) is a promising approach to achieving high yields and optimum taste, and it offers a more sustainable fertilizer management strategy compared with chemical N fertilization.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


2020 ◽  
Vol 53 (1) ◽  
pp. 19-27
Author(s):  
Adenike Fisayo Komolafe ◽  
Christopher Olu Adejuyigbe ◽  
Adeniyi Adebowale Soretire ◽  
Isaac OreOluwa Olatokunbo Aiyelaagbe

AbstractCompost maturity is a major factor in its use for nutrient supply without adverse effect on crop germination. Composting may be accelerated with inclusion of some microorganisms as activators. This study was conducted to determine the effect of Trichoderma asperellum and length of composting of different plant materials and cattle manure on compost maturity in Ibadan, Nigeria. Composting of two plant materials with cow dung at ratio 3:1 was done in triplicate with or without Trichoderma activation to obtain twelve heaps of four different types of composts; Panicum-based compost with Trichoderma, Tridax-based compost with Trichoderma, Panicum-based compost without Trichoderma and Tridax-based compost without Trichoderma. The process was a 2×2 factorial experiment, laid out a completely randomized design. The Trichoderma activated compost (TAC) at four weeks of composting (4WC) had 56% total N, 21% organic matter, 38% total K, 51% total P and 66.6% microbial biomass N increase over non-activated compost (NAC). Carbon to nitrogen ratio was within the ideal range (10–20) in TAC while it was greater than it in NAC. Microbial biomass and lignin contents had a 56% and 41% increase, respectively, in NAC over TAC. Trichorderma-activated compost has a potential to hasten maturation and makes the compost ready for field on or before four weeks without posing a threat to crop germination.


2011 ◽  
Vol 1 (4) ◽  
pp. 202-207
Author(s):  
N. Ewusi‐Mensah ◽  
V. Logah ◽  
J. O. Fening

This paper reports the short Ã¢â‚¬Â term effects of organic and inorganic fertilizerapplications on the culturable resident bacterial and fungal properties of aFerric Acrisol in the semi Ã¢â‚¬Âdeciduous forest zone of Ghana after three continuouscropping seasons. The treatments were two compost types (i.e. 1:1compost comprising 1 part made up of Chromolaena, Stylosanthes, maizestover mixture and 1 part of cattle manure, 2:1 compost comprising 2 partsof Chromolaena, Stylosanthes, maize stover mixture and 1 part of cattle manure),cowdung, 100% NPK and a control replicated three times in a randomizedcomplete block design. The results showed that total microbial load on alogarithmic scale ranged from 4.6 cfu/g in the control to 5.4 on cowdungtreated plots. Bacterial counts on 2:1 compost applied at 5 t/ha treatedplots recorded 5% more bacteria than the 1:1 compost applied at 5 t/ha.Fungal counts in the control and inorganic treated plots were higher than theorganically amended plots. The highest and lowest microbial biomass C contentswere recorded on cowdung and 1:1 compost at 5 t/ha treated plotsrespectively. Microbial biomass N content ranged from 1.4 Ã¢â‚¬Â 8.2 mg N kg‐1soil with a mean value of 6.2 mg N kg Ã¢â‚¬Â1 soil. Microbial biomass P contentranged from 3.6 Ã¢â‚¬Â 6.3 mg P kg‐1 soil with a mean value of 5 mg P kg‐1 soil.Microbial biomass carbon to organic carbon ratio varied from 18.37 to 85.63.


1995 ◽  
Vol 124 (1) ◽  
pp. 17-25 ◽  
Author(s):  
L. J. Wyland ◽  
L. E. Jackson ◽  
K. F. Schulbach

SUMMARYWinter non-leguminous cover crops are included in crop rotations to decrease nitrate (NO3-N) leaching and increase soil organic matter. This study examined the effect of incorporating a mature cover crop on subsequent N transformations. A field trial containing a winter cover crop of Merced rye and a fallow control was established in December 1991 in Salinas, California. The rye was grown for 16 weeks, so that plants had headed and were senescing, resulting in residue which was difficult to incorporate and slow to decompose. Frequent sampling of the surface soil (0–15 cm) showed that net mineralizable N (anaerobic incubation) rapidly increased, then decreased shortly after tillage in both treatments, but that sustained increases in net mineralizable N and microbial biomass N in the cover-cropped soils did not occur until after irrigation, 20 days after incorporation. Soil NO3-N was significantly reduced compared to winter-fallow soil at that time. A 15N experiment examined the fate of N fertilizer, applied in cylinders at a rate of 12 kg 15N/ha at lettuce planting, and measured in the soil, microbial biomass and lettuce plants after 32 days. In the cover-cropped soil, 59% of the 15N was recovered in the microbial biomass, compared to 21% in the winter-bare soil. The dry weight, total N and 15N content of the lettuce in the cover-cropped cylinders were significantly lower; 28 v. 39% of applied 15N was recovered in the lettuce in the cover-cropped and winter-bare soils, respectively. At harvest, the N content of the lettuce in the cover-cropped soil remained lower, and microbial biomass N was higher than in winter-bare soils. These data indicate that delayed cover crop incorporation resulted in net microbial immobilization which extended into the period of high crop demand and reduced N availability to the crop.


2013 ◽  
Vol 10 (11) ◽  
pp. 7631-7645 ◽  
Author(s):  
N. Legay ◽  
F. Grassein ◽  
T. M. Robson ◽  
E. Personeni ◽  
M.-P. Bataillé ◽  
...  

Abstract. Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active growth and freeze-thaw cycles restricting microbial growth. In managed subalpine grasslands, we expect these interactions to be influenced by recent changes in agricultural land use, and associated modifications in plant and microbial communities. At several subalpine grasslands in the French Alps, we added pulses of 15N to the soil at the end of snowmelt, allowing us to compare the dynamics of inorganic N uptake in plants and microbes during this period with that previously reported at the peak biomass in July. In all grasslands, while specific shoot N translocation (per g of biomass) of dissolved inorganic nitrogen (DIN) was two to five times greater at snowmelt than at peak biomass, specific microbial DIN uptakes were similar between the two sampling dates. On an area basis, plant communities took more DIN than microbial communities at the end of snowmelt when aboveground plant biomasses were at least two times lower than at peak biomass. Consequently, inorganic N partitioning after snowmelt switches in favor of plant communities, allowing them to support their growing capacities at this period of the year. Seasonal differences in microbial and plant inorganic N-related dynamics were also affected by past (terraced vs. unterraced) rather than current (mown vs. unmown) land use. In terraced grasslands, microbial biomass N remained similar across seasons, whereas in unterraced grasslands, microbial biomass N was higher and microbial C : N lower at the end of snowmelt as compared to peak biomass. Further investigations on microbial community composition and their organic N uptake dynamics are required to better understand the decrease in microbial DIN uptake.


Sign in / Sign up

Export Citation Format

Share Document