scholarly journals Podzolisation affects the spatial allocation and chemical composition of soil organic matter fractions

Soil Research ◽  
2020 ◽  
Vol 58 (8) ◽  
pp. 713
Author(s):  
Agnes Krettek ◽  
Ludger Herrmann ◽  
Thilo Rennert

Podzols are soils that display a unique vertical distribution of soil organic matter (SOM). We hypothesise that podzolisation, as a pedogenetic process, influences or even controls content, allocation and quality of SOM. We determined soil organic carbon (SOC) and nitrogen (N) contents in six SOM fractions obtained from mineral horizons of five soils with increasing degree of podzolisation: sand and stable aggregates (S + A), particulate organic matter (POM) > 63 µm and <63 µm, silt and clay (s + c), resistant SOC and dissolved organic matter. We applied infrared spectroscopy to evaluate SOM decomposition state, relative abundance of functional groups and SOM-metal complexation. In topsoil horizons, relative SOC allocation shifted from the larger to the smaller size POM fraction with increasing podzolisation. Accompanied with size reduction, the POM < 63 µm fraction was progressively less decomposed, as derived from infrared spectroscopy and C:N ratios. In illuvial subsoils, the proportion of SOC in the S + A fraction increased with increasing podzolisation, implying SOM accumulation in aggregates and coatings on sand grains. Elevated abundance of carboxylate and aromatic C in the s + c fractions of subsoil horizons indicated their preferred sorption. Additionally, metal-carboxyl complexation increased during podzolisation.

2021 ◽  
Author(s):  
Gerardo Ojeda ◽  
Hernando García ◽  
Susanne Woche ◽  
Jorg Bachmann ◽  
Georg Guggenberger ◽  
...  

<p><strong>Contextualization</strong>: In 2011, it was published a curious conundrum, which forms the basis of the present study: why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years? The question challenges the idea that the recalcitrant or labile character of soil organic matter (SOM) is a sufficient argument to ensure SOM persistence. Temperature could play an important role in SOM decomposition, especially in tropics. Particularly, tropical dry forest (TDF) represents an important ecosystem with unique biodiversity and fertile soils in Colombia. At present, the increase in population density and consequently, in the demands of energy and arable land, have led to its degradation.</p><p> </p><p><strong>Knowledge gap</strong>: Although the mentioned question was formulated several years ago, it has still to be answered, hence limiting the development of new soil organic carbon (SOC) models or the quantification of its ecosystem services. A key point, in terms of soil carbon storage, is to determine the maximum rate of CO<sub>2</sub> emissions from soils (Rmax). Traditionally, it is considered that Rmax occurs at the 50% of field capacity. Unfortunately, information about the environmental conditions under which this maximum occurs is scarce.</p><p><strong> </strong></p><p><strong>Purpose</strong>: The main objectives of this study were: (a) determine the maximum rate of soil respiration or CO<sub>2</sub> emissions from soil in TDF soils and (b) to estimate the main environmental drivers of maximum SOM decomposition along a temperature gradient (20°, 30°, 40°C) in incubated soils.</p><p><strong> </strong></p><p><strong>Methodology</strong>: Soils pertained to permanent plots were sampled in six different TDF of Colombia. The evolution of CO<sub>2</sub> emissions (monitored by an infrared gas analyser), relative humidity and soil temperature were recorded in time on incubated soils samples. Temperature was maintained constant at 20°C, 30°C and 40°C during soil incubations under soil drying conditions. Additionally, elemental composition (Fe, Ca, O, Al, Si, K, Mg, Na) of SOM and chemical composition of soil organic carbon (SOC: aromatic-C, O-alkyl-C, Aliphatic-C, Phenolic and Ketonic-C) were determined by X-ray photoelectron spectroscopy (XPS).</p><p><strong> </strong></p><p><strong>Results and conclusions</strong>: The majority of TDF soil samples (90.7%) presented that its peak of CO<sub>2</sub> emissions occurs at soil-water contents higher than saturation (0 MPa), at 20°, 30° and 40°C. Clearly, to consider that the maximum soil respiration rate could be observed at the 50% of field capacity, underestimated the real maximum value of carbon mineralization (48-68%.) Globally, increases in the Rmax values corresponded to increases in electrical conductivity, soil desorption rates, total carbon and nitrogen contents, and decreases in bulk density (BD) and aggregate stability. Taking into account the temperature gradient, increments in calcium and aromatic carbon contents corresponded to decrements in Rmax values but only at 30°C and 40°C, respectively. Some authors indicated that at high soil moisture contents, iron reduction could be release protected carbon. However, no significant relation between Fe and Rmax was observed. Consequently, physical and chemical properties related to SOM accessibility and decomposability by microbial activity, were the main drivers and controls of maximum SOM decomposition rates.</p>


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


2018 ◽  
Vol 47 (4) ◽  
pp. 718-725 ◽  
Author(s):  
Elias Mendes Costa ◽  
Wagner de Souza Tassinari ◽  
Helena Saraiva Koenow Pinheiro ◽  
Sidinei Julio Beutler ◽  
Lucia Helena Cunha dos Anjos

2018 ◽  
Vol 8 (3) ◽  
pp. 459-468
Author(s):  
Cristiane Figueira da Silva ◽  
Marcos Gervasio Pereira ◽  
Júlio César Fernandes Feitosa ◽  
Ariovaldo Machado Fonseca Júnior ◽  
João Henrique Gaia-Gomes ◽  
...  

The aim of this work was to evaluate the influence of the conversion of forest systems to agricultural systems in the organic matter compartments, aggregation and soil chemical attributes, in the Atlantic Forest. The evaluated systems were: annual crop (ACr); perennial agriculture (PAg); pasture; and secondary forest early (SFES), medium (SFMS), and advanced stage (SFAS). Soil samples were collected at the layer of 0-5 cm depth and quantified the total organic carbon (TOC), C of humic substances, oxidizable C, granulometric fractions of soil organic matter (SOM), soil chemical attributes, soil aggregation and glomalin-related soil protein (GRSP-total and GRSP-easily extractable) in different aggregate classes. It was observed a reduction of the TOC, particulate organic carbon (POC), humic substances and oxidizable C in the PAg and ACr areas comparing to pasture and forest systems. Moreover, the pH values increased whereas P content decreased in comparison with SFAS. As for aggregation, the PAg and the ACr decreased by around 35% and 20% the mean weight diameter of aggregates, respectively, compared to the average values found in the forestry systems, and 34% and 45%, respectively in relation to pasture. In general, GRSP-total were reduced by agriculture. Thus, it appears that the agriculture which has been practiced is altering negatively the soil chemical, physical and biological attributes.


2020 ◽  
Vol 12 (2) ◽  
pp. 443 ◽  
Author(s):  
Theodora Angelopoulou ◽  
Athanasios Balafoutis ◽  
George Zalidis ◽  
Dionysis Bochtis

Rapid and cost-effective soil properties estimations are considered imperative for the monitoring and recording of agricultural soil condition for the implementation of site-specific management practices. Conventional laboratory measurements are costly and time-consuming, and, therefore, cannot be considered appropriate for large datasets. This article reviews laboratory and proximal sensing spectroscopy in the visible and near infrared (VNIR)–short wave infrared (SWIR) wavelength region for soil organic carbon and soil organic matter estimation as an alternative to analytical chemistry measurements. The aim of this work is to report the progress made in the last decade on data preprocessing, calibration approaches, and system configurations used for VNIR-SWIR spectroscopy of soil organic carbon and soil organic matter estimation. We present and compare the results of over fifty selective studies and discuss the factors that affect the accuracy of spectroscopic measurements for both laboratory and in situ applications.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 346
Author(s):  
K. L. Page ◽  
R. C. Dalal ◽  
S. H. Reeves ◽  
W. J. Wang ◽  
Somasundaram Jayaraman ◽  
...  

No-till (NT) farming has been widely adopted to assist in reducing erosion, lowering fuel costs, conserving soil moisture and improving soil physical, chemical and biological characteristics. Improvements in soil characteristics are often driven by the greater soil organic matter accumulation (as measured by soil organic carbon (SOC)) in NT compared to conventional tillage (CT) farming systems. However, to fully understand the effect of NT it is important to understand temporal changes in SOC by monitoring over an extended period. We investigated the long-term effect of NT and stubble retention (SR) on changes in SOC and total soil nitrogen (STN) using results from an experiment that has been running for 50 years in a semi-arid subtropical region of north-eastern Australia. In this experiment, the effects of tillage (CT vs NT), residue management (stubble burning (SB) vs SR), and nitrogen (N) fertiliser (0 and 90 kg-N ha–1) were measured in a balanced factorial experiment on a Vertisol (Ustic Pellusert). The use of NT, SR and N fertiliser generally improved SOC (by up to 12.8%) and STN stocks (by up to 31.7%) in the 0–0.1 m layer relative to CT, SB and no N fertiliser, with the greatest stocks observed where all three treatments were used in combination. However, declines in SOC (up to 20%) and STN (up to 25%) occurred in all treatments over the course of the experiment, indicating that changes in management practices were unable to prevent a loss of soil organic matter over time in this farming system. However, the NT and SR treatments did lose less SOC than CT and SB treatments, and SR also reduced STN loss. The δ13C analysis of samples collected in 2008 and 2015 highlighted that crop residues have significantly contributed to SOC stocks at the site and that their contribution is increasing over time.


2019 ◽  
Vol 10 (12) ◽  
pp. 415-432
Author(s):  
Hussam Hag Husein ◽  
Mohammad Mousa ◽  
Wahib Sahwan ◽  
Rupert Bäumler ◽  
Bernhard Lucke

Sign in / Sign up

Export Citation Format

Share Document