Restorative crops for the amelioration of degraded soil conditions in New Zealand

Soil Research ◽  
1999 ◽  
Vol 37 (6) ◽  
pp. 1017 ◽  
Author(s):  
G. S. Francis ◽  
F. J. Tabley ◽  
K. M. White

The effects of restorative crops on the amelioration of a degraded soil were investigated in a 6-year field experiment. Treatments included perennial pastures, annual pastures, and arable crops. Improvements in some aspects of chemical, biological, and physical fertility were related to the amount of herbage dry matter returned to the soil and root production. Beneficial effects associated with returned organic matter were partly negated by the degradative effect of tillage. Treatments that returned most organic material to the soil showed the greatest increase in aggregate stability and supported the largest earthworm populations, especially without annual tillage. Differences between treatments in soil organic C content were not generally significant until the sixth year. In contrast, differences between treatments in microbial biomass C were apparent by the third year. Compaction by sheep during grazing appeared to result in a loss of soil macroporosity. In the sixth year, soil macroporosity was greatest in the annually cultivated, ungrazed treatments. The grazed perennial ryegrass and ryegrass/white clover treatments were the most effective in ameliorating degraded soil conditions. The rate of soil amelioration declined with depth, and was mainly confined to the top 10 cm of soil. The rate of amelioration was relatively slow, with, for example, 3 years needed for most of the increase in aggregate stability at 0–5 cm depth.


2021 ◽  
Vol 13 (17) ◽  
pp. 9769
Author(s):  
Gábor Csitári ◽  
Zoltán Tóth ◽  
Mónika Kökény

The effect of two types of organic amendment (manure and straw incorporation) and various doses (0–200 kg N*ha−1) of mineral N fertilization on microbial biomass C (MBC), aggregate stability (AS), soil organic C (SOC) and grain yield were investigated in an IOSDV long-term fertilization experiment (Keszthely, Hungary). This study was conducted during years 2015–2016 in a sandy loam Ramann-type brown forest soil (Eutric Cambisol according to WRB). Organic amendments had a significant effect on AS, MBC and SOC, increased their values compared to the unamended control. The organic amendments showed different effects on AS and MBC. AS was increased the most by straw incorporation and MBC by manure application. The magnitude of temporal variability of AS and MBC differed. Presumably, the different effects of organic amendments and the different degrees of temporal variability explain why there was only a weak (0.173) correlation between AS and MBC. AS did not correlate with SOC or grain yield. MBC correlated (0.339) with SOC but not with the grain yield. The N fertilizer dose did not have a significant effect on AS and MBC, but had a significant effect on SOC and grain yield.





2018 ◽  
Vol 44 (2) ◽  
pp. 675
Author(s):  
P. Hueso-González ◽  
J.M. Martínez-Murillo ◽  
J.D. Ruiz-Sinoga

Restoring the native vegetation is one of the most effective way to regenerate forest soil health. The seeding and plant establishment stages are critical; but during these stages the beneficial effects of the vegetation may not be apparent, and the soil is highly susceptible to erosion and depletion of soil quality. In the initial months after afforestation, vegetation cover establishment and soil quality could be better sustained if the soil was amended with an external extra source of organic matter. The objective of this study is to analyze the benefits of using different organic amendments on some soil properties. The soil treatment selected were: (i) afforestation with straw mulching treatment; (ii) afforestation with mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); (iii) afforestation with cattle manure compost; (iv) sewage sludge and; (v) afforestation in unamended soils, control condition. The amendments were applied at the rate of 10 Mg ha-1. Six years after the amendment application, only the addition of straw and pine mulch have shown a significant increase in soil organic carbon regarding the afforestation under bare soil conditions. Besides, this increase was also directly related with the increase in microbiological activity and aggregate stability. On the other hand, the addition of sewage sludge or cattle manure is not an effective treatment to favor the edaphic structure regarding the afforestation under unamended soils.



Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 493 ◽  
Author(s):  
MR Carter ◽  
PM Mele

Changes and relationships for organic C, microbial biomass C and N, and soil structural stability indices were determined at the soil surface after 10 years of direct drilling stubble retained (DDR) and stubble burnt (DDB), and cultivation with stubble burnt (CCB) for cropping systems on a sandy clay loam, duplex soil (calcic luvisol) in south-eastern Australia. Direct drilling caused a slight but significant increase in soil organic C at the 0-25 mm soil depth compared to the cultivated treatment. Microbial biomass C and N increases over the 0-100 mm soil depths were seasonal and generally greater for the DDR in comparison with DDB and CCB systems. Use of short duration wet sieving for the 0-25 mm soil depth showed a significant increase in aggregate stability for the DDR, especially for 2-10 mm sized aggregates, compared with the other tillage treatments. Such differences were reduced by standard wet sieving or use of a dispersion test illustrating the fragile nature of these unstable aggregates developed under cropping systems. Soil structural indices (water stable aggregates >2.00 mm, and >0.25 mm; mean weight diameter) were weakly correlated with increases in microbial biomass (r = 0.45, P < 0.01) and to total organic C (r = 0.35, P < 0.05). For these tillage systems, microbial biomass tended to be a poor predictor of changes in soil organic C. Overall, the long term effect of direct drilling and stubble retention in these cropping systems provided only relatively minor increases in organic C and, consequently, aggregate stability.



Soil Research ◽  
2001 ◽  
Vol 39 (4) ◽  
pp. 711 ◽  
Author(s):  
W. E. Cotching ◽  
J. Cooper ◽  
L. A. Sparrow ◽  
B. E. McCorkell ◽  
W. Rowley

Attributes of 25 Tasmanian sodosols were assessed using field and laboratory techniques to determine changes associated with 4 typical forms of agricultural management [long-term pasture, cropping with shallow tillage using discs and tines, cropping (including potatoes) with more rigorous and deeper tillage including deep ripping and powered implements, and cropping (including potatoes) where the potatoes were harvested when the soil was wet]. Soil organic carbon in the top 150 mm was 2.7% under long-term pasture compared with 1.8% in rigorously tilled cropping paddocks, and microbial biomass C values were 194 and 129 mg/kg, respectively. Readily oxidisable organic C concentrations were 1.8 mg/g and 1.3 mg/g, respectively. Infiltration rate was greater in paddocks with shallow tillage cropping than long-term pasture but was 43% less in paddocks which had grown potatoes and 70% less after a wet potato harvest. Dry aggregate-size showed no change under shallow tillage cropping compared with long-term pasture but decreased significantly in more rigorously tilled potato cropping paddocks. Aggregate stability in all cropped paddocks was nearly 50% less than in long-term pasture paddocks, with values in intensively tilled potato cropping paddocks approaching relatively low levels. Colwell extractable phosphorus (P) increased with all cropping, particularly after potatoes. Lower organic carbon and poorer physical properties were associated with paddocks which had grown potatoes, which adds weight to the view that cropping rotation and associated soil management practices are critical for sustainable management of Tasmanian sodosols. Farmers were surveyed about their views of the condition of their paddocks. They identified more healthy than unhealthy soil attributes under all management histories but reported more unhealthy soil attributes when potatoes were included in their rotation.



Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 345 ◽  
Author(s):  
G. D. Schwenke ◽  
D. R. Mulligan ◽  
L. C. Bell

At Weipa, in Queensland, Australia, sown tree and shrub species sometimes fail to establish on bauxite-mined land, possibly because surface-soil organic matter declines during soil stripping and replacement. We devised 2 field experiments to investigate the links between soil rehabilitation operations, organic matter decline, and revegetation failure. Experiment 1 compared two routinely practiced operations, dual-strip (DS) and stockpile soil, with double-pass (DP), an alternative method, and subsoil only, an occasional result of the DS operation. Other treatments included variations in stripping-time, ripping-time, fertiliser rate, and cultivation. Dilution of topsoil with subsoil, low-grade bauxite, and ironstone accounted for the 46% decline of surface-soil (0–10 cm) organic C in DS compared with pre-strip soil. In contrast, organic C in the surface-soil (0–10 cm) of DP plots (25.0 t/ha) closely resembled the pre-strip area (28.6 t/ha). However, profile (0–60 cm) organic C did not differ between DS (91.5 t/ha), DP (107 t/ha), and pre-strip soil (89.9 t/ha). Eighteen months after plots were sown with native vegetation, surface-soil (0–10 cm) organic C had declined by an average of 9% across all plots. In Experiment 2, we measured the potential for post-rehabilitation decline of organic matter in hand-stripped and replaced soil columns that simulated the DS operation. Soils were incubated in situ without organic inputs. After 1 year’s incubation, organic C had declined by up to 26% and microbial biomass C by up to 61%. The difference in organic C decline between vegetated replaced soils (Expt 1) and bare replaced soils (Expt 2) showed that organic inputs affect levels of organic matter more than soil disturbance. Where topsoil was replaced at the top of the profile (DP) and not ploughed, inputs from volunteer native grasses balanced oxidation losses and organic C levels did not decline.



2021 ◽  
Vol 11 (2) ◽  
pp. 750
Author(s):  
Roberta Pastorelli ◽  
Giuseppe Valboa ◽  
Alessandra Lagomarsino ◽  
Arturo Fabiani ◽  
Stefania Simoncini ◽  
...  

Digestate from biogas production can be recycled to the soil as conditioner/fertilizer improving the environmental sustainability of the energy supply chain. In a three-year maize-triticale rotation, we investigated the short-term effects of digestate on soil physical, chemical, and microbiological properties and evaluated its effectiveness in complementing the mineral fertilizers. Digestate soil treatments consisted of combined applications of the whole digestate and its mechanically separated solid fraction. Digestate increased soil total organic C, total N and K contents. Soil bulk density was not affected by treatments, while aggregate stability showed a transient improvement due to digestate treatments. A decrement of the transmission pores proportion and an increment of fissures was observed in digestate treated soils. Soil microbial community was only transiently affected by digestate treatments and no soil contamination from Clostridiaceae-related bacteria were observed. Digestate can significantly impair seed germination when applied at low dilution ratios. Crop yield under digestate treatment was similar to ordinary mineral-based fertilization. Overall, our experiment proved that the agronomic recycling of digestate from biogas production maintained a fair crop yield and soil quality. Digestate was confirmed as a valid resource for sustainable management of soil fertility under energy-crop farming, by combining a good attitude as a fertilizer with the ability to compensate for soil organic C loss.



Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 296 ◽  
Author(s):  
D. Das ◽  
B. S. Dwivedi ◽  
V. K. Singh ◽  
S. P. Datta ◽  
M. C. Meena ◽  
...  

Decline in soil organic carbon (SOC) content is considered a key constraint for sustenance of rice–wheat system (RWS) productivity in the Indo-Gangetic Plain region. We, therefore, studied the effects of fertilisers and manures on SOC pools, and their relationships with crop yields after 18 years of continuous RWS. Total organic C increased significantly with the integrated use of fertilisers and organic sources (from 13 to 16.03gkg–1) compared with unfertilised control (11.5gkg–1) or sole fertiliser (NPKZn; 12.17gkg–1) treatment at 0–7.5cm soil depth. Averaged across soil depths, labile fractions like microbial biomass C (MBC) and permanganate-oxidisable C (PmOC) were generally higher in treatments that received farmyard manure (FYM), sulfitation pressmud (SPM) or green gram residue (GR) along with NPK fertiliser, ranging from 192 to 276mgkg–1 and from 0.60 to 0.75gkg–1 respectively compared with NPKZn and NPK+cereal residue (CR) treatments, in which MBC and PmOC ranged from 118 to 170mgkg–1 and from 0.43 to 0.57gkg–1 respectively. Oxidisable organic C fractions revealed that very labile C and labile C fractions were much larger in the NPK+FYM or NPK+GR+FYM treatments, whereas the less-labile C and non-labile C fractions were larger under control and NPK+CR treatments. On average, Walkley–Black C, PmOC and MBC contributed 29–46%, 4.7–6.6% and 1.16–2.40% towards TOC respectively. Integrated plant nutrient supply options, except NPK+CR, also produced sustainable high yields of RWS.



2021 ◽  
Vol 8 (4) ◽  
pp. 2995-3005
Author(s):  
Hasbullah Syaf ◽  
Muhammad Albar Pattah ◽  
Laode Muhammad Harjoni Kilowasid

Earthworms (Pheretima sp.) could survive under abiotic stress soil conditions. Furthermore, their activities as ecosystem engineers allow for the creation of soil biostructures with new characteristics. Therefore, this study aimed to investigate the effect of the abundance of Pheretima sp. on the aggregate size, physicochemistry, and biology of the topsoil from the nickel mining area of Southeast Sulawesi, Indonesia. It was carried out by first grouping their abundance into zero, two, four, six, and eight individuals per pot and then carrying out tests. The Pheretima sp. were then released onto the surface of the topsoil and mixed with biochar that was saturated with tap water in the pot overnight. The results showed that the abundance of the species had a significant effect on the size class distribution, and aggregate stability of the soil. Furthermore, the size of the soil aggregates formed was dominated by the size class 2.83 - 4.75 mm under both dry and wet conditions. Under dry conditions, three size classes were found, while under wet conditions, there were five size classes. The results also showed that the highest and lowest stability indexes occurred with zero and eight Pheretima sp., respectively. Furthermore, the abundance had a significant effect on pH, organic C, total N, CEC, and total nematodes. However, it had no significant effect on the total P, C/N ratio, total AMF spores, and flagellate. The highest soil pH occurred with zero Pheretima sp., while with six and two members of the species, the total nematode was at its highest and lowest populations, respectively. Therefore, it could be concluded that the species was able to create novel conditions in the topsoils at the nickel mining area that were suitable for various soil biota.



Sign in / Sign up

Export Citation Format

Share Document