Estimation of erosion model erodibility parameters from media properties

Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 265 ◽  
Author(s):  
G. J. Sheridan ◽  
H. B. So ◽  
R. J. Loch ◽  
C. M. Walker

The aim of this research was to enable erodibility values for hillslope-scale erosion prediction models to be determined from easily measured media properties. Simulated rainfall and overland flow experiments were carried out on 34 soils and overburdens from 15 Queensland open-cut coal mines at The University of Queensland Erosion Processes Laboratory. Properties of the 34 media determined included aggregate stability, Atterberg limits, bulk density, cation exchange capacity, dispersion ratios, electrical conductivity, exchangeable sodium percentage, organic carbon content, pH, texture, and water content at field capacity and wilting point. Correlation and stepwise multiple regression procedures were used to determine those media properties that could best be used to predict rill and interill erodibility. Correlations between media properties and sediment delivery at each of 5, 10, 15, 20, and 30% slope revealed that different media properties were correlated with erosion rates at different slopes. A media property could show a strong correlation with erodibility at 30% slope, and a low correlation at 5% slope. Splitting the data set into soils only, and overburdens only, showed that properties that were positively correlated with erosion rates for one group could be negatively correlated for the other group. Therefore, in this study, erodibility could not be explicitly linked to one set of media properties for all medium types and erosive conditions. It was concluded that a single regression equation could not be used to predict erodibility under all conditions. Instead, 4 equations were developed to predict rill and interill erodibility, for soils and overburdens separately. The need for separate regression equations was attributed to the presence of different erosive sub-processes for specific combinations of medium type and slope gradient.

2018 ◽  
Vol 91 (1) ◽  
pp. 431-449 ◽  
Author(s):  
Kevin Ratnayaka ◽  
Ralf Hetzel ◽  
Jens Hornung ◽  
Andrea Hampel ◽  
Matthias Hinderer ◽  
...  

AbstractAlluvial fans record climate-driven erosion and sediment-transport processes and allow reconstructing past environmental conditions. Here we investigate the sedimentation history of two alluvial fans located in formerly glaciated valleys of the Cordillera Oriental, Peru.10Be exposure ages from the fan surfaces and radiocarbon ages from the fan interiors constrain the final stages of fan formation. The10Be and14C ages cluster mainly between 13.3–9.3 ka and 11,500–9700 cal yr BP, respectively. Our age data set indicates that—after deglaciation—large amounts of fan sediment were deposited until ∼10 ka, when sedimentation rates declined rather abruptly. This pattern is supported by10Be erosion rates for the fan catchments, because under the assumption of constant erosion the time needed to erode the material stored in the fans significantly exceeds their age. Correlating our ages with regional climate records indicates that precipitation exerts the primary control on fan sedimentation. Two periods with elevated lake levels and increased precipitation between 18 and 14.5 ka and from 13 to 11.5 ka resulted in rapid deposition of large fan lobes. Subsequently, lower precipitation rates decreased erosion in the catchments and sediment delivery to the fans, which have remained largely inactive since ∼9.5 ka.


2021 ◽  
Author(s):  
Verena Stammberger ◽  
Benjamin Jacobs ◽  
Michael Krautblatter

<p>High-intensity precipitation events and the resulting extreme discharges in mountain torrents are immensely dangerous and destructive hazards that can put lives in danger and cause expensive damages to infrastructure. There is a high probability that further changes in climate will favour the genesis and therefore increase the frequency of such extreme events. Nevertheless, there is a pronounced desire to experience breathtaking mountainous landscapes, especially when easy accessible. An example is the Höllental gorge (between 1032 and 1062 m a.s.l., Wetterstein mountains, Germany), a key touristic attraction in the region with up to 100k visitors per year. Especially for such highly frequented places, the knowledge and comprehension of possible risks from hydrological and geomorphic hazards is crucial. With this in mind, we are reconstructing and discussing possible modelling approaches of a recent event of a hyperconcentrated flow through the gorge.</p><p>In June 2020 a local extreme precipitation event between 50 and 60 mm/h caused a rapid accumulation of the surface runoff due to the steep slopes of the Höllental (inclination of ø 110%). Secondary sediment storages were mobilized and transported to the main channel where a hyperconcentrated flow developed at the beginning of the gorge. Depending on the percentage of transported sediment in the flow, temporary transitions to a debris flow were possible. Throughout the ravine, massive forces reshaped the rock walls and the channel bed by particle erosion, shearing and relocation of boulders up to 20 m<sup>3</sup>.</p><p>In this study we present a comparison of two terrestrial laser scan campaigns, the first two weeks prior to the event and the second just five days after. We were able to accurately calculate the morphological changes along the sides of the channel and obtained a unique data set for bedrock erosion rates due to the impact of a hyperconcentrated flow. We mapped the flow height throughout the whole gorge by identifying the visible transition of undisturbed to roughened rock surfaces. DEM difference calculation upstream allows to determine the erosion and deposition heights as well as the corresponding volumes. Additionally, electrical resistivity tomographies reveal the thickness of (still) available sediment upstream.</p><p>Here we discuss possible numerical and analytical modelling approaches and analyse preliminary results. We aim at coupling the observed erosion rates to calculated velocities of a model that integrates the complex topography as well as the rheological parameters of the flow. A calibration of the model will be achieved with the mapped flow height in the gorge. Due to the complexity of the gorge, a frequently used numerical simulation as well as a analytical open-channel flow model will be analyzed and compared.</p><p>This study presents a unique dataset of effective erosion rates with records collected pre- and post-event. The results contribute to strongly improve the understanding of the flow dynamics in hyperconcentrated flows and give unparalleled information about erosion processes in narrow bedrock channels.</p>


1988 ◽  
Vol 110 (3) ◽  
pp. 515-520 ◽  
Author(s):  
I. S. Dahiya ◽  
D. J. Dahiya ◽  
M. S. Kuhad ◽  
S. P. S. Karwasra

SummaryStatistical equations were derived for estimating three soil moisture constants, i.e. field capacity (FC), wilting point (WP) and available water capacity (AWC), from soil saturation percentage (SP), which is an easily determinable parameter. The regression equations were evaluated from a data set obtained on 438 soil samples collected from different horizons of 111 profiles of the Indogangetic Plains in northern India, having a wide variation of texture and other physico-chemical properties. The three soil moisture constants were positively correlated with logarithms of SP (r = 0·985 for FC v. In SP, 0·979 for WP v. In SP, and 0·914 for AWC v. In SP). The regression equations were thetested on an independent set of experimental data on 57 samples collected from 14 representative soil profiles of the study area. Values of the three moisture constants of this data set, predicted from the regression equations, were in exceptionally good agreement with the observed values. The mean estimation error (the error of the estimated value relative to the measured value) was only 0·55% for FC, 0·12% for WP and 0·67% for AWC.


Soil Research ◽  
1996 ◽  
Vol 34 (4) ◽  
pp. 489 ◽  
Author(s):  
RJ Loch

With the release of the Revised Universal Soil Loss Equation (RUSLE) there is potential to consider a range of responses of erosion to increasing slope length. This paper presents data to illustrate commonly observed effects of increasing overland flow on erosion processes and erosion rates, and considers the application of the data to specifying land management strategies and forms of vegetative cover most suited to particular soils. It also discusses a methodology for assessing relevant slope length factors for the RUSLE based on rill/interrill susceptibility. Three basic responses to slope length are noted: (i) little increase in erosion per unit area with increasing length, due to either the failure of rills to develop for the range of overland flows considered, or rill formation at very low hows with no further increase in erosion rates as flow rates increase; (ii) moderate increase in erosion per unit area with slope length associated with slight rill development; and (iii) large increases in erosion per unit area with slope length as rilling develops strongly. These responses have significance for the relative importance of surface and contact cover (and therefore, for the plant species grown and/or residue management strategy adopted), and for the use of contour banks to reduce slope length.


2020 ◽  
Vol 12 (2) ◽  
pp. 1347-1365 ◽  
Author(s):  
C. Jason Williams ◽  
Frederick B. Pierson ◽  
Patrick R. Kormos ◽  
Osama Z. Al-Hamdan ◽  
Justin C. Johnson

Abstract. Rainfall simulation and overland-flow experiments enhance understanding of surface hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for developing and testing predictive models. We present a unique dataset (1021 experimental plots) of rainfall simulation (1300 plot runs) and overland-flow (838 plot runs) experimental plot data paired with measures of vegetation, ground cover, and surface soil physical properties spanning point to hillslope scales. The experimental data were collected at three sloping sagebrush (Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland encroachment and with conditions representative of intact wooded shrublands and 1–9 years following wildfire, prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies applied in data collection and the cross-scale experimental design uniquely provide scale-dependent, separate measures of interrill (rain splash and sheet flow processes, 0.5 m2 plots) and concentrated overland-flow runoff and erosion rates (∼9 m2 plots), along with collective rates for these same processes combined over the patch scale (13 m2 plots). The dataset provides a valuable source for developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse plant community dynamics with varying vegetation, ground cover, and surface soil conditions. The experimental data advance understanding and quantification of surface hydrologic and erosion processes for the research domain and potentially for other patchy-vegetated rangeland landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous treatments and timescales delivers a valuable dataset for examining long-term landscape vegetation, soil, hydrology, and erosion responses to various management actions, land use, and natural disturbances. The dataset is available from the US Department of Agriculture National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (last access: 7 May 2020) (doi: https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019).


2009 ◽  
Vol 6 (2) ◽  
pp. 2153-2188 ◽  
Author(s):  
N. Konz ◽  
D. Bänninger ◽  
M. Nearing ◽  
C. Alewell

Abstract. We chose the WEPP model (Water Erosion Prediction Project) to describe soil erosion in the Urseren Valley (central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species, fractional vegetation cover, initial saturation level), by laboratory analyses (grain size, organic matter) or by the WEPP manual (rill- and interrill erodibility, effective hydraulic conductivity, cation exchange capacity). The quantification of soil erosion was performed on hill slope scale for three different land use types: meadows, pastures with dwarf shrubs and pastures without dwarf shrubs. Erosion rates for the vegetation period were measured with sediment traps between June 2006 and November 2007. Long-term soil erosion rates were estimated by measuring Cs-137 redistribution, deposited after the Chernobyl accident. In addition to the erosion rates, soil moisture and surface flow was additionally measured during the vegetation period in the field and compared to model output. Short-term erosion rates are simulated well whereas long term erosion rates were underestimated by the model. Simulated soil moisture has a parallel development compared to measured data from April onwards but a converse dynamic in early spring (simulated increase and measured decrease in March and April). The discrepancy in soil water during springtime was explained by delayed simulated snow cover melting. The underestimation of simulated long term erosion rates is attributed to alpine processes other than overland flow and splash. Snow gliding processes might dominate erosion processes during winter time. We assume that these differences lead to the general simulated underestimation of erosion rates. Thus, forcing erosion processes which dominate erosion rates in mountainous regions have to be implemented to WEPP for a successful application in the future.


2019 ◽  
Author(s):  
C. Jason Williams ◽  
Frederick B. Pierson ◽  
Patrick R. Kormos ◽  
Osama Z. Al-Hamdan ◽  
Justin C. Johnson

Abstract. Rainfall simulation and overland-flow experiments enhance understanding of surface hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for developing and testing predictive models. We present a unique dataset (1021 experimental plots) of rainfall simulation (1300 plot runs) and overland flow (838 plot runs) experimental plot data paired with measures of vegetation, ground cover, and surface soil physical properties spanning point to hillslope scales. The experimental data were collected at three sloping sagebrush (Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland-encroachment and with conditions representative of intact wooded-shrublands and 1–9 yr following wildfire, prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies applied in data collection and the cross-scale experimental design uniquely provide scale-dependent, separate measures of interrill (rainsplash and sheetflow processes) and concentrated overland-flow runoff and erosion rates along with collective rates for these same processes combined over the patch scale (tens of meters). The dataset provides a valuable source for developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse plant community dynamics with varying vegetation, ground cover, and surface soil conditions. The experimental data advance understanding and quantification of surface hydrologic and erosion processes for the research domain and potentially for other patchy-vegetated rangeland landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous treatments and time scales delivers a valuable dataset for examining long-term landscape vegetation, soil, hydrology, and erosion responses to various management actions, land use, and natural disturbances. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019).


2015 ◽  
Vol 12 (12) ◽  
pp. 12947-12985 ◽  
Author(s):  
P. Pereira ◽  
A. Gimeìnez-Morera ◽  
A. Novara ◽  
S. Keesstra ◽  
A. Jordán ◽  
...  

Abstract. Road and railway infrastructure increased in the Mediterranean region during the last three decades. This included the building of embankments, which are assumed to be a~large source of sediments and runoff. However, little is known about soil erosion rates, the factors that control them, and the processes that contribute to detachment, transport and deposition of sediments from road and railway embankments. The objective of this study was therefore to assess the impacts of road and railway embankments as a source of sediment and water, and compare them to other land use types (citrus plantations and shrublands) representative of the Cànyoles watershed to evaluate the importance of road embankments as a~source of water and sediment under high magnitude low frequency rainfall events. Sixty rainfall experiments (1 m2 plots; 60 min duration; 78 mm h−1 rainfall intensity) were carried out on these land use types: 20 on two railway embankments (10 + 10), 20 on two road embankments (10 + 10), and 10 on citrus and 10 on shrubland. Road and railway embankments were characterized by bare soils with low organic matter and high bulk density. Erosion processes were more active in road, railway and citrus plots, and null in the shrublands. The non-sustainable soil erosion rates of 3 Mg ha−1 y−1 measured on the road embankments were due to the efficient runoff connectivity plus low infiltration rates within the plot as the runoff took less than one minute to reach the runoff outlet. Road and railway embankments are both an active source of sediments and runoff, and soil erosion control strategies must be applied. The citrus plantations also act as a~source of water and sediments (1.5 Mg ha−1 y−1), while shrublands are sediment sinks, as no overland flow was observed due to the high infiltration rates.


Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 33 ◽  
Author(s):  
RJ Loch ◽  
TE Donnollan

Runoff and sediment concentrations were measured under simulated rainfall for a range of plot lengths, tilled either across or up and down the slope, on two soils, both of 4% slope. Sediment was moved by either rain-flow transport (the combined action of drop impact and shallow overland flow), or rilling, in which overland flow alone was the main agent of detachment and transport. Rain-flow transport occurred on all plots, while rilling developed only at plot discharges greater than 0.3-0.7 L s-1. For both processes, sediment was dominantly bed-load, and on both soils the concentration of bed-load carried by rills was approximately 4.8 times that carried by rain-flow. From this and other evidence it was concluded that sediment concentrations were controlled by transport capacity rather than the supply of detached sediment. For both rainflow and rill transport, sediment concentrations were constant over a range of plot discharges. It is suggested that rainflow concentrations were controlled largely by rainfall intensity, which was constant. Rills were observed to widen rather than deepen with increasing discharge, which would minimize changes in rill transport capacity. Tillage across slope delayed runoff and reduced total runoff and soil loss. Tillage orientation affected the plot discharges needed for rill initiation, but did not affect the sediment concentrations transported by either of the two main sediment transport processes that were observed.


2015 ◽  
Vol 12 (3) ◽  
pp. 3527-3592 ◽  
Author(s):  
U. Scherer ◽  
E. Zehe

Abstract. This study quantifies soil and land use controls on sediment mobilisation and redistribution in cultivated loess soil landscapes, as these landscapes are frequently used for intensive cultivation and are highly susceptible to erosion. To this end we developed and verified a process based model named CATFLOW-SED at the plot, hillslope and catchment scales. The model relies on an explicit representation of hillslopes and their dominant physiographical characteristics which control overland flow formation, particle detachment and sediment redistribution (transport and sedimentation). Erosion processes are represented by means of the steady state approximation of the sediment continuity equation, their interaction is conceptualized based on the sediment transport capacity of overland flow. Particle detachment is represented by means of a threshold approach accounting for the attacking forces of rainfall and overland flow which need to exceed a threshold in soil erosion resistance to mobilize soil particles (Scherer et al., 2012). Transport capacity of overland flow is represented as proposed by Engelund and Hansen (1967). Top soil particles and aggregates are detached and transported according to their share in the particle size distribution. Size selective deposition of soil particles is determined based on the sink velocity of the various particle size classes. CATFLOW-SED was verified on the plot, hillslope and catchment scale, where either particle detachment or lateral redistribution or sedimentation is the limiting factor, to check whether the respective parameterizations are transferable for simulations at the next higher scale. For verification we used the Weiherbach data set providing plot scale rainfall simulation experiments, long term monitoring of sediment yields on a selected hillslope as well as observed sediment fluxes at the catchment outlet. Our findings corroborate that CATFLOW-SED predicted the sediment loads at all scales within the error margin of the measurements. An accurate prediction of overland flow turned out as being necessary and sufficient to guarantee spatial transferability of erosion parameters optimized at smaller scales to the next higher scale without need for further calibration. Based on the verified model setup, we investigate the efficiency of land use management to mitigate measures in erosion scenarios for cultivated loess landscapes.


Sign in / Sign up

Export Citation Format

Share Document