scholarly journals Does WEPP meet the specificity of soil erosion in steep mountain regions?

2009 ◽  
Vol 6 (2) ◽  
pp. 2153-2188 ◽  
Author(s):  
N. Konz ◽  
D. Bänninger ◽  
M. Nearing ◽  
C. Alewell

Abstract. We chose the WEPP model (Water Erosion Prediction Project) to describe soil erosion in the Urseren Valley (central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species, fractional vegetation cover, initial saturation level), by laboratory analyses (grain size, organic matter) or by the WEPP manual (rill- and interrill erodibility, effective hydraulic conductivity, cation exchange capacity). The quantification of soil erosion was performed on hill slope scale for three different land use types: meadows, pastures with dwarf shrubs and pastures without dwarf shrubs. Erosion rates for the vegetation period were measured with sediment traps between June 2006 and November 2007. Long-term soil erosion rates were estimated by measuring Cs-137 redistribution, deposited after the Chernobyl accident. In addition to the erosion rates, soil moisture and surface flow was additionally measured during the vegetation period in the field and compared to model output. Short-term erosion rates are simulated well whereas long term erosion rates were underestimated by the model. Simulated soil moisture has a parallel development compared to measured data from April onwards but a converse dynamic in early spring (simulated increase and measured decrease in March and April). The discrepancy in soil water during springtime was explained by delayed simulated snow cover melting. The underestimation of simulated long term erosion rates is attributed to alpine processes other than overland flow and splash. Snow gliding processes might dominate erosion processes during winter time. We assume that these differences lead to the general simulated underestimation of erosion rates. Thus, forcing erosion processes which dominate erosion rates in mountainous regions have to be implemented to WEPP for a successful application in the future.

2010 ◽  
Vol 14 (4) ◽  
pp. 675-686 ◽  
Author(s):  
N. Konz ◽  
D. Baenninger ◽  
M. Konz ◽  
M. Nearing ◽  
C. Alewell

Abstract. Mountainous soil erosion processes were investigated in the Urseren Valley (Central Switzerland) by means of measurements and simulations. The quantification of soil erosion was performed on hill slope scale (2·20 m) for three different land use types: hayfields, pastures with dwarf shrubs and pastures without dwarf shrubs with three replicates each. Erosion rates during growing season were measured with sediment traps between June 2006 and November 2007. Long-term soil erosion rates were estimated based on Cs- 137 redistribution. In addition, soil moisture and surface flow were recorded during the growing season in the field and compared to model output. We chose the WEPP model (Water Erosion Prediction Project) to simulate soil erosion during the growing season. Model parameters were determined in the field (slope, plant species, fractional vegetation cover, initial saturation level), by laboratory analyses (grain size, organic matter) and by literature study. The WEPP model simulates sheet erosion processes (interrill and splash erosion processes, please note that no rill erosion occurs at our sites). Model output resulted in considerable smaller values than the measured erosion rates with sediment traps for the same period. We attribute the differences to observed random gravity driven erosion of soil conglomerates. The Cs-137 measurements deliver substantially higher mean annual erosion rates, which are most likely connected to snow cover related processes such as snow gliding and avalanche activities.


Author(s):  
Aleksandra Loba ◽  
Jarosław Waroszewski ◽  
Dmitry Tikhomirov ◽  
Fancesca Calitri ◽  
Marcus Christl ◽  
...  

Abstract Purpose Loess landscapes are highly susceptible to soil erosion, which affects soil stability and productivity. Erosion is non-linear in time and space and determines whether soils form or degrade. While the spatial variability of erosion is often assessed by either modelling or on-site measurements, temporal trends over decades to millennia are very often lacking. In this study, we determined long- and short-term erosion rates to trace the dynamics of loess deposits in south-western Poland. Materials and methods We quantified long-term (millennial) erosion rates using cosmogenic (in situ 10Be) and short-term (decadal) rates with fallout radionuclides (239+240Pu). Erosion processes were studied in two slope-soil transects (12 soil pits) with variable erosion features. As a reference site, an undisturbed soil profile under natural forest was sampled. Results and discussion The long-term erosion rates ranged between 0.44 and 0.85 t ha−1 year−1, whereas the short-term erosion rates varied from 1.2 to 10.9 t ha−1 year−1 and seem to be reliable. The short-term erosion rates are up to 10 times higher than the long-term rates. The soil erosion rates are quite consistent with the terrain relief, with erosion increasing in the steeper slope sections and decreasing in the lower parts of the slope, while still maintaining high values. Conclusions Soil erosion rates have increased during the last few decades owing to agriculture intensification and probably climate change. The measured values lie far above tolerable erosion rates, and the soils were found to be strongly imbalanced and exhibit a drastic shallowing of the productive soils horizons.


2015 ◽  
Vol 12 (12) ◽  
pp. 12947-12985 ◽  
Author(s):  
P. Pereira ◽  
A. Gimeìnez-Morera ◽  
A. Novara ◽  
S. Keesstra ◽  
A. Jordán ◽  
...  

Abstract. Road and railway infrastructure increased in the Mediterranean region during the last three decades. This included the building of embankments, which are assumed to be a~large source of sediments and runoff. However, little is known about soil erosion rates, the factors that control them, and the processes that contribute to detachment, transport and deposition of sediments from road and railway embankments. The objective of this study was therefore to assess the impacts of road and railway embankments as a source of sediment and water, and compare them to other land use types (citrus plantations and shrublands) representative of the Cànyoles watershed to evaluate the importance of road embankments as a~source of water and sediment under high magnitude low frequency rainfall events. Sixty rainfall experiments (1 m2 plots; 60 min duration; 78 mm h−1 rainfall intensity) were carried out on these land use types: 20 on two railway embankments (10 + 10), 20 on two road embankments (10 + 10), and 10 on citrus and 10 on shrubland. Road and railway embankments were characterized by bare soils with low organic matter and high bulk density. Erosion processes were more active in road, railway and citrus plots, and null in the shrublands. The non-sustainable soil erosion rates of 3 Mg ha−1 y−1 measured on the road embankments were due to the efficient runoff connectivity plus low infiltration rates within the plot as the runoff took less than one minute to reach the runoff outlet. Road and railway embankments are both an active source of sediments and runoff, and soil erosion control strategies must be applied. The citrus plantations also act as a~source of water and sediments (1.5 Mg ha−1 y−1), while shrublands are sediment sinks, as no overland flow was observed due to the high infiltration rates.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


Author(s):  
R. J. Rickson ◽  
◽  
E. Dowdeswell Downey ◽  
G. Alegbeleye ◽  
S. E. Cooper ◽  
...  

Soil erodibility is the susceptibility of soil to the erosive forces of rainsplash, runoff and wind. It is a significant factor in determining present and future soil erosion rates. Focusing on soil erosion by water, this chapter shows that erodibility is determined by static and dynamic soil properties that control a range of sub-processes affecting soil erosion, but there is no standardised test procedure, making comparison of erodibility assessment techniques and their results challenging. Most researchers agree that aggregate stability is the best indicator of soil erodibility. Selection of techniques to measure aggregate stability need to consider the type of disruptive forces and breakdown processes to which field aggregates are subjected. New indices must incorporate spatial and temporal variabilities in erodibility; the different erosion processes operating; the impact of climate change; and the role of soil biology. New analytical techniques such as computer aided tomography show promise in considering soil erodibility as a dynamic continuum operating over 3 dimensions.


2017 ◽  
Vol 21 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Antonio Hayas ◽  
Tom Vanwalleghem ◽  
Ana Laguna ◽  
Adolfo Peña ◽  
Juan V. Giráldez

Abstract. Gully erosion is an important erosive process in Mediterranean basins. However, the long-term dynamics of gully networks and the variations in sediment production in gullies are not well known. Available studies are often conducted only over a few years, while many gully networks form, grow, and change in response to environmental and land use or management changes over a long period. In order to clarify the effect of these changes, it is important to analyse the evolution of the gully network with a high temporal resolution. This study aims at analysing gully morphodynamics over a long timescale (1956–2013) in a large Mediterranean area in order to quantify gully erosion processes and their contribution to overall sediment dynamics. A gully network of 20 km2 located in southwestern Spain has been analysed using a sequence of 10 aerial photographs in the period 1956–2013. The extension of the gully network both increased and decreased in the study period. Gully drainage density varied between 1.93 km km−2 in 1956, a minimum of 1.37 km km−2 in 1980, and a maximum of 5.40 km km−2 in 2013. The main controlling factor of gully activity appeared to be rainfall. Land use changes were found to have only a secondary effect. A new Monte Carlo-based approach was proposed to reconstruct gully erosion rates from orthophotos. Gully erosion rates were found to be relatively stable between 1956 and 2009, with a mean value of 11.2 t ha−1 yr−1. In the period 2009–2011, characterized by severe winter rainfalls, this value increased significantly to 591 t ha−1 yr−1. These results show that gully erosion rates are highly variable and that a simple interpolation between the starting and ending dates greatly underestimates gully contribution during certain years, such as, for example, between 2009 and 2011. This illustrates the importance of the methodology applied using a high temporal resolution of orthophotos.


1998 ◽  
Vol 130 (4) ◽  
pp. 473-488 ◽  
Author(s):  
P. A. JAMES ◽  
R. W. ALEXANDER

Studies of soil erosion in upland and marginal upland Britain are reviewed. Processes affecting soil erosion and runoff are described in marginal upland improved pastures of differing age in the Clwydian Hills, including one which was cultivated twice during the study period. A Gerlach-type trough was designed for trapping sediment and filtered runoff from bounded plots and for operating under grazing. Erosion and runoff amounts are interpreted in the light of ground cover, rainfall amounts and intensity, the action of grazing stock and other animals, and other influences. The chief erosion processes are the action of animals and surface wash by unconcentrated overland flow; no rilling occurred. The significance of particle size of eroded sediment is discussed.


2012 ◽  
Vol 16 (2) ◽  
pp. 517-528 ◽  
Author(s):  
E. Ceaglio ◽  
K. Meusburger ◽  
M. Freppaz ◽  
E. Zanini ◽  
C. Alewell

Abstract. Mountain areas are widely affected by soil erosion, which is generally linked to runoff processes occurring in the growing season and snowmelt period. Also processes like snow gliding and full-depth snow avalanches may be important factors that can enhance soil erosion, however the role and importance of snow movements as agents of soil redistribution are not well understood yet. The aim of this study was to provide information on the relative importance of snow related processes in comparison to runoff processes. In the study area, which is an avalanche path characterized by intense snow movements, soil redistribution rates were quantified with two methods: (i) by field measurements of sediment yield in an avalanche deposition area during 2009 and 2010 winter seasons; (ii) by caesium-137 method, which supplies the cumulative net soil loss/gain since 1986, including all the soil erosion processes. The snow related soil accumulation estimated with data from the deposit area (27.5 Mg ha−1 event−1 and 161.0 Mg ha−1 event−1) was not only higher than the yearly sediment amounts, reported in literature, due to runoff processes, but it was even more intense than the yearly total deposition rate assessed with 137Cs (12.6 Mg ha−1 yr−1). The snow related soil erosion rates estimated from the sediment yield at the avalanche deposit area (3.7 Mg ha−1 and 20.8 Mg ha−1) were greater than the erosion rates reported in literature and related to runoff processes; they were comparable to the yearly total erosion rates assessed with the 137Cs method (13.4 Mg ha−1 yr−1 and 8.8 Mg ha−1 yr−1). The 137Cs method also showed that, where the ground avalanche does not release, the erosion and deposition of soil particles from the upper part of the basin was considerable and likely related to snow gliding. Even though the comparison of both the approaches is linked to high methodological uncertainties, mainly due to the different spatial and temporal scales considered, we still can deduce, from the similarity of the erosion rates, that soil redistribution in this catchment is driven by snow movement, with a greater impact in comparison to the runoff processes occurring in the snow-free season. Nonetheless, the study highlights that soil erosion processes due to the snow movements should be considered in the assessment of soil vulnerability in mountain areas, as they significantly determine the pattern of soil redistribution.


Sign in / Sign up

Export Citation Format

Share Document