The effect of pre-detached particles on soil erodibilities associated with erosion by rain-impacted flows

Soil Research ◽  
1994 ◽  
Vol 32 (1) ◽  
pp. 127 ◽  
Author(s):  
PIA Kinnell

In shallow rain-impacted flows, particles detached from the soil matrix will produce a layer of pre-detached particles on an eroding surface when entrainment by flow is absent. This layer provides a degree of protection to the underlying soil matrix and material from the layer also contributes to the discharge of sediment across the downstream boundary of an eroding area. The development and effects of the layer are dynamic. The layer tends to be more protective at low flow velocities and with coarse particles than at high velocities and with fine particles. The ease by which particles can be detached from the soil matrix also influences the development of the layer. The dynamic nature of the layer results in the susceptibility of a surface to erosion by rain-impacted flow varying in time and space. The consequence of this is examined with respect to erodibilities associated with an erosivity index that is based on the product of runoff rate and the rate of expenditure of rainfall kinetic energy.

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Stephan Schwander ◽  
Clement D. Okello ◽  
Juergen Freers ◽  
Judith C. Chow ◽  
John G. Watson ◽  
...  

Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5(fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m3in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%–55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health.


2014 ◽  
Vol 14 (5) ◽  
pp. 2233-2244 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
R. Talbot ◽  
H. Mao ◽  
X. Yang ◽  
...  

Abstract. A comprehensive measurement study of mercury wet deposition and size-fractionated particulate mercury (HgP) concurrent with meteorological variables was conducted from June 2011 to February 2012 to evaluate the characteristics of mercury deposition and particulate mercury in urban Nanjing, China. The volume-weighted mean (VWM) concentration of mercury in rainwater was 52.9 ng L−1 with a range of 46.3–63.6 ng L−1. The wet deposition per unit area was averaged 56.5 μg m−2 over 9 months, which was lower than that in most Chinese cities, but much higher than annual deposition in urban North America and Japan. The wet deposition flux exhibited obvious seasonal variation strongly linked with the amount of precipitation. Wet deposition in summer contributed more than 80% to the total amount. A part of contribution to wet deposition of mercury from anthropogenic sources was evidenced by the association between wet deposition and sulfates, as well as nitrates in rainwater. The ions correlated most significantly with mercury were formate, calcium, and potassium, which suggested that natural sources including vegetation and resuspended soil should be considered as an important factor to affect the wet deposition of mercury in Nanjing. The average HgP concentration was 1.10 ± 0.57 ng m−3. A distinct seasonal distribution of HgP concentrations was found to be higher in winter as a result of an increase in the PM10 concentration. Overall, more than half of the HgP existed in the particle size range less than 2.1 μm. The highest concentration of HgP in coarse particles was observed in summer, while HgP in fine particles dominated in fall and winter. The size distribution of averaged mercury content in particulates was bimodal, with two peaks in the bins of < 0.7 μm and 4.7–5.8 μm. Dry deposition per unit area of HgP was estimated to be 47.2 μg m−2 using meteorological conditions and a size-resolved particle dry deposition model. This was 16.5% less than mercury wet deposition. Compared to HgP in fine particles, HgP in coarse particles contributed more to the total dry deposition due to higher deposition velocities. Negative correlation between precipitation and the HgP concentration reflected the effect of scavenging of HgP by precipitation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ran Tao ◽  
Ruofu Xiao ◽  
Wei Yang ◽  
Fujun Wang

RANS simulation is widely used in the flow prediction of centrifugal pumps. Influenced by impeller rotation and streamline curvature, the eddy viscosity models with turbulence isotropy assumption are not accurate enough. In this study, Spalart-Shur rotation/curvature correction was applied on the SSTk-ωturbulence model. The comparative assessment of the correction was proceeded in the simulations of a centrifugal pump impeller. CFD results were compared with existing PIV and LDV data under the design and low flow rate off-design conditions. Results show the improvements of the simulation especially in the situation that turbulence strongly produced due to undesirable flow structures. Under the design condition, more reasonable turbulence kinetic energy contour was captured after correction. Under the low flow rate off-design condition, the prediction of turbulence kinetic energy and velocity distributions became much more accurate when using the corrected model. So, the rotation/curvature correction was proved effective in this study. And, it is also proved acceptable and recommended to use in the engineering simulations of centrifugal pump impellers.


2021 ◽  
Vol 248 ◽  
pp. 01048
Author(s):  
Wenzhao Chen ◽  
Kai Yang ◽  
Jiaqing Fan ◽  
Xiqi Liu ◽  
Xiaoqing Wei

Sulfide minerals (mainly FeS2) contained in lead-zinc tailings are easy to be acidified in the air. The acidification mechanism is that the tailing sand generates sulfuric acid and sulfate under the catalysis of oxidant, water and oxygen. The acidic liquid generated by the reaction will continue to react with metal oxides to form an insoluble precipitate.In order to reveal the corresponding changes of chemical properties and physical properties of lead-zinc tailing sand during acidification, a series of reaction processes of tailings under natural conditions were simulated by immersion test in laboratory.It is found through the test that with the deepening of acidification, the coarse particles of tailing sand dissolve, resulting in the decrease of iron concentration in the compound, the increase of fine particles, the increase of specific surface area, the decrease of surface friction and occlusion friction between particles, resulting in the decrease of internal friction angle, and the decrease of the safety of tailings dam. words.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ulf Olofsson ◽  
Lars Olander ◽  
Anders Jansson

Recently, much attention has been paid to the influence of airborne particles in the atmosphere on human health. Sliding contacts are a significant source of airborne particles in urban environments. In this study airborne particles generated from a sliding steel-on-steel combination are studied using a pin-on-disk tribometer equipped with airborne-particle counting instrumentation. The instrumentation measured particles in size intervals from 0.01μm to 32μm. The result shows three particle size regimes with distinct number peaks: ultrafine particles with a size distribution peak around 0.08μm, fine particles with a peak around 0.35μm, and coarse particles with a peak around 2 or 4μm. Both the particle generation rate and the wear rate increase with increasing sliding velocity and contact pressure.


2005 ◽  
Vol 5 (10) ◽  
pp. 2739-2748 ◽  
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
A. M. de Frutos

Abstract. Samples of atmospheric aerosol particles were collected in Valladolid, Spain, during the winter of 2003-2004. The measurements were made with a Dekati PM10 cascade impactor with four size stages: greater than 10 µm, between 2.5 to 10 µm, 1 to 2.5 µm and less than 1 µm. The size and shape of the particles were analyzed with a scanning electron microscope (SEM) and elemental analysis was done with an energy dispersive x-ray analysis (EDX). We present an evaluation by size, shape and composition of the major particulate species in the Valladolid urban atmosphere. The total aerosol concentration is very variable, ranging from 39.86 µg·m-3 to 184.88 µg·m-3 with the coarse particles as the dominant mass fraction. Emphasis was given to fine particles (<1 µm), for which the visible (400 nm to 650 nm) light absorption coefficients were measured using the integrating plate technique. We have made some enhancements in the illumination system of this measurement system. The absorption coefficient, σa, is highly variable and ranges from 7.33×10-6 m-1 to 1.01×10-4 m-1 at a wavelength of 550 nm. There is an inverse power law relationship between σa and wavelength, with an average exponent of -0.8.


1993 ◽  
Vol 27 (10) ◽  
pp. 19-34 ◽  
Author(s):  
R. I. Mackie ◽  
R. Bai

The paper examines the importance of size distribution of the influent suspension on the performance of deep bed filters and its significance with regard to modelling. Experiments were carried out under a variety of conditions using suspensions which were identical in every respect apart from their size distribution. The results indicate that the presence of coarse particles does increase the removal of fine particles. Deposition of fine particles leads to a greater headloss than deposition of large particles. Changes in size distribution with time and depth play an important role in determining the behaviour of a filter, and models of both removal and headloss development must take account of this.


Sign in / Sign up

Export Citation Format

Share Document