Changes in microbial biomass and organic matter levels during the first year of modified tillage and stubble management practices on a red earth

Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1339 ◽  
Author(s):  
V Gupta ◽  
MM Roper ◽  
JA Kirkegaard ◽  
JF Angus

Farming practices involving stubble burning and excessive tillage in Australia have led to losses of organic matter from the soil. Crop residue retention and reduced tillage practices can reverse these trends, but changes in organic matter levels are evident only after a long term. Microbial biomass (MB), the living portion of soil organic matter, responds rapidly to changes in soil and crop management practices. We evaluated changes in microbial biomass and microbial activity in the first year following the modification of stubble management and tillage practices on a red earth near Harden, New South Wales. Following an oat crop harvested late in 1989, seven treatments involving stubble and tillage management were applied in February 1990. Wheat was planted in May 1990. Measurements of total organic carbon (C) and total nitrogen (N) in the top 15 cm of soil indicated no significant changes after 1 year, although there was a significant effect on the distribution of C and N. However, significant changes in MB were observed in the first year. Microbial biomass C in the top 5 cm of the soil ranged from 25 to 52 g C m-2 and these levels dropped by 50% or more with each 5 cm depth. Implementation of treatments altered MB, particularly in the top 5 cm where MB-C and MB-N were significantly greater in stubble-retained than in the top 5 cm where MB-C and MB-N were significantly greater in stubble-retained than in the stubble-burnt treatments, and in the direct drill treatment than in the stubble-incorporated treatment. Microbial biomass in soil increased during the growth of wheat in all treatments, but this was slower in the standing stubble-direct drill treatment, probably due to the delay in the decomposition of stubble. Microbial respiration, which was concentrated in the surface 5 cm of soil in all treatments, was greatest in the direct drill treatments. Microbial activity below 5 cm was higher with stubble incorporation than with direct drill. Specific microbial activity (microbial respiration per unit MB) had the greatest response to tillage at 10-15 cm depth. Microbial quotients (MB as a percentage of C or N) responded to changes in tillage but not significantly to stubble retention. Our studies, during the first year following the modification of stubble management and tillage practices, suggested that changes in MB and microbial activity may be sensitive and reliable indicators of long-term changes in organic matter in soils.

2007 ◽  
Vol 47 (6) ◽  
pp. 700 ◽  
Author(s):  
M. C. Manna ◽  
A. Swarup ◽  
R. H. Wanjari ◽  
H. N. Ravankar

Yield decline or stagnation under long-term cultivation and its relationship with soil organic matter fractions are rarely considered. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in a long-term experiment at Akola, in a Vertisol in a semiarid tropical environment. For 14 years, the following fertiliser treatments were compared with undisturbed fallow plots: unfertilised (control), 100% recommended rates of N, NP, NPK (N : P : K ratios of 100 : 21.8 : 18.2 and 120 : 26.2 : 50 kg/ha for sorghum and wheat, respectively) and 100% NPK plus farmyard manure (FYM) and continuous cropping with a sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L.) system during 1988–2001. The significant negative yield trend was observed in unbalanced use of inorganic N application for both crops. However, yields were maintained when NPK and NPK + FYM were applied. Results showed that soil organic C and total N in the unfertilised plot decreased by 21.7 and 18.2%, compared to the initial value, at a depth of 0–15 cm. Depletion of large macroaggregates (>2 mm) accounted for 22–81% of the total mass of aggregates in N, NP and unfertilised control plots compared to fallow plots. Irrespective of treatments, small macroaggregates (0.25–2 mm) dominated aggregate size distribution (56–71%), followed by microaggregates (0.053–0.25 mm, 18–37%). Active fractions, such as microbial biomass C, microbial biomass N, hot water soluble C and N, and acid hydrolysable carbohydrates were greater in NPK and NPK + FYM treatments than in the control. Carbon and N mineralisation were greater in small macroaggregates than microaggregates. Particulate organic matter C (POMC) and N (POMN) were significantly correlated (P < 0.01) with water-stable aggregate C and N (0.25–2 mm size classes), respectively. It was further observed that POMC and POMN were significantly greater in NPK and NPK + FYM plots than N and NP treated plots. Microbial biomass C was positively correlated with acid-hydrolysable carbohydrates (r = 0.79, P < 0.05). Continuous cropping and fertiliser use also influenced humic acid C and fulvic acid C fractions of the soil organic matter. Acid-hydrolysable N proportion in humic acid was greater than fulvic acid and it was greatest in NPK + FYM treatments. Continuous application of 100% NPK + FYM could restore soil organic carbon (SOC) to a new equilibrium level much earlier (t = 1/k, 2.4 years) than N (t = 1/k, 25.7 years), NP (t = 1/k, 8.1 years) and NPK (t = 1/k, 5.02 years). In conclusion, integrated use of NPK with FYM would be vital to obtain sustainable yields without deteriorating soil quality.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2190
Author(s):  
Ranjan Laik ◽  
B. H. Kumara ◽  
Biswajit Pramanick ◽  
Santosh Kumar Singh ◽  
Nidhi ◽  
...  

Labile soil organic matter pools (LSOMp) are believed to be the most sensitive indicator of soil quality when it is changed rapidly with varied management practices. In sub-tropical climates, the turnover period of labile pools is quicker than in temperate climates. Organic amendments are of importance in improve the LSOMp for a temperate climate and may be helpful in sub-tropical climates as well. Hence, the status of LSOMp was studied in long term farmyard manure (FYM) amended soils under wheat (Triticum aestivum L.) and pearl millet (Pennisetum glaucum L.) cropping systems in sub-tropical arid conditions. At the same time, we also attempt to determine the impact of mineral nitrogen (N) application in these pools. In this study, dissolved organic matter (DOM), microbial biomass (MB), and light fraction (LF) were isolated in the management practices involving different modes and rates of FYM applications along with the application of nitrogenous fertilizer. C and N contents of the labile pools were analyzed in the soil samples at different periods after FYM applications. Among the different pools, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were changed significantly with different rates and modes of FYM application and mineral N application. Application of FYM at 15 Mg ha−1 in both the seasons + 120 kg ha−1 mineral N resulted in significantly higher MBC and DOC as compared to all of the other treatments. This treatment also resulted in 13.75% and 5.8% more MBC and DOC, respectively, as compared to the amount of MBC and DOC content in the control plot where FYM and mineral N were not applied. Comparing the labile organic matter pools of 45 years of FYM amendment with initial values, it was found that the dissolved organic carbon, microbial biomass carbon, and light fraction carbon were increased up to the maximum extent of about 600, 1200, and 700 times, respectively. The maximum amount of DOM (562 mg kg−1 of DOC and 70.1 mg kg−1 of DON), MB (999 mg kg−1 of MBC and 158.4 mg kg−1 of MBN), LF (2.61 g kg−1 of LFC and 154.6 g kg−1 of LFN) were found in case of both season applied FYM as compared to either summer or winter applied FYM. Concerning the different rates of FYM application, 15 Mg ha−1 FYM also resulted in a significantly higher amount of DOM, MB, and LF as compared to other FYM rates (i.e., 5 Mg ha−1 and 10 Mg ha−1). Amongst different pools, MB was found to be the most sensitive to management practices in this study. From this study, it was found that the long-term FYM amendment in sub-tropical soil along with mineral N application can improve the LSOMp of the soil. Thus, it can be recommended that the application of FYM at 15 Mg ha−1 in summer and winter with +120 kg ha−1 mineral N can improve SOC and its labile pools in subtropical arid soils. Future studies on LSOMp can be carried out by considering different cropping systems of subtropical climate.


1981 ◽  
Vol 61 (2) ◽  
pp. 211-224 ◽  
Author(s):  
R. P. VORONEY ◽  
J. A. VAN VEEN ◽  
E. A. PAUL

The amounts of organic matter in native prairie and in an adjacent cultivated field were compared with the output from a simulation model describing organic matter dynamics. The effects of past and possible future soil management practices, and the loss of organic C through rainfall erosion were incorporated into the simulation study. Seventy years of cultivation increased the bulk density of the A horizon by an average of 16% along the catena of a Black Chernozemic soil. Organic C had decreased by 36% in the soil profile at the mid-slope position. Losses of organic N were 5–10% less. Depletion of organic C and N from the Ah horizon accounted for > 90% of the total loss from the soil profile. Therefore, extrapolation of data from surface soil, based solely on changes in the concentration of organic C and N, could result in an overestimation of organic matter losses from soils. Microbial biomass in the Ap horizon of the crop-summer-fallow site was 30% less than in the Ah horizon of the native prairie. The model predicted an immediate rise in microbial biomass C upon cultivation of the native prairie due to a large initial input of grassland litter and roots. Subsequently, the microbial biomass C decreased and approached a steady-state level which was 25% less than in the native prairie. The model indicates that large quantities of N released during the initial years of cultivation would not have been totally utilized by the cultivated crops, therefore resulting in major losses to the environment. However, now the organic matter is reaching a steady-state level and only small net release of N can be expected; external N sources are required for optimum crop production. Management practices such as straw removal and cropping sequence have short-term effects on the rate of depletion of soil organic C. Similar equilibrium levels of soil organic matter were predicted after 100 yr of cultivation in simulation studies that did not consider erosion losses. The inclusion of rainfall erosion losses indicated that major organic C and other nutrient losses will occur in management practices that include significant portions of fallow in the cropping sequence.


1997 ◽  
Vol 352 (1356) ◽  
pp. 1011-1021 ◽  
Author(s):  
J. K. Syers

Meeting the goal of long–term agricultural productivity requires that soil degradation be halted and reversed. Soil fertility decline is a key factor in soil degradation and is probably the major cause of declining crop yields. There is evidence that the contribution of declining soil fertility to soil degradation has been underestimated. Sensitivity to soil degradation is implicit in the assessment of the sustainability of land management practices, with wide recognition of the fact that soils vary in their ability to resist change and recover subsequent to stress. The concept of resilience in relation to sustainability requires further elaboration and evaluation. In the context of soil degradation, a decline in soil fertility is primarily interpreted as the depletion of organic matter and plant nutrients. Despite a higher turnover rate of organic matter in the tropics there is no intrinsic difference between the organic matter content of soils from tropical and temperate regions. The level of organic matter in a soil is closely related to the above and below ground inputs. In the absence of adequate organic material inputs and where cultivation is continuous, soil organic matter declines progressively. Maintaining the quantity and quality of soil organic matter should be a guiding principle in developing management practices Soil microbial biomass serves as an important reservoir of nitrogen (N), phosphorus (P) and sulphur (S), and regulates the cycling of organic matter and nutrients. Because of its high turnover rate, microbial biomass reacts quickly to changes in management and is a sensitive indicator for monitoring and predicting changes in soil organic matter. Modelling techniques have been reasonably successful in predicting changes in soil organic matter with different organic material inputs, but there is little information from the tropics. Nutrient depletion through harvested crop components and residue removal, and by leaching and soil erosion accentuates the often very low inherent fertility of many soils in the tropics. An integrated approach involving inorganic and organic inputs is required where animal and plant residues are returned, as far as practicable. Chemical fertilizers alone cannot achieve long–term productivity on many soils and organic material inputs are required to maintain soil organic matter levels and crop productivity. A major research effort is required to develop improved strategies for halting and reversing soil degradation if long–term productivity is to be secured.


2017 ◽  
Vol 63 ◽  
pp. 377-411
Author(s):  
David Powlson ◽  
Phil Brookes

David Jenkinson was one of the most influential soil scientists of his generation, bringing new insights into the transformations of organic matter and nitrogen in soil. He spent the majority of his career at Rothamsted Research, Harpenden, UK. His studies were influential regarding the role of soil carbon stocks in the context of climate change and the role of nitrogen fertilizer in delivering adequate supplies of food for a growing world population. His research encompassed both fundamental studies on soil processes and immensely practical applications of this knowledge, often utilizing the Rothamsted long-term experiments that have run for over 170 years. He is particularly well known for his development of a method for determining the quantity of organic carbon held in the cells of living micro-organisms in soil, termed the ‘soil microbial biomass’. This breakthrough opened the way for a new wave of soil biological research. David developed one of the earliest computer models for the turnover of organic carbon in soil, known as the Rothamsted Carbon Model, RothC. This model, conceptually very simple, has proved highly successful in simulating and predicting changes in soil organic carbon (SOC) content under different management practices worldwide, being used by over 2600 people in 115 countries. His research using the stable isotope of nitrogen, 15 N, in large-scale field experiments drew attention to the factors leading to inefficiencies in the use of nitrogen fertilizer but also demonstrated that it is possible to achieve high efficiency if good agricultural management practices are followed. It also demonstrated, more clearly than previously, the great importance of soil organic matter as a source of nitrogen for crops and the role of the soil microbial biomass both in immobilizing a proportion of applied fertilizer nitrogen and also in causing confusion in the interpretation of such experiments. By calculating nitrogen budgets for the Rothamsted long-term experiments he quantified the deposition of nitrogen compounds from atmosphere to land, laying foundations for later studies concerning the ecological and agricultural impacts of this significant input of nitrogen.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


1983 ◽  
Vol 63 (2) ◽  
pp. 363-375 ◽  
Author(s):  
R. M. DANIELSON ◽  
S. VISSER ◽  
D. PARKINSON

Slender wheatgrass and jack pine were grown in the greenhouse in cores containing a bottom layer of extracted oil sands with four overburdens individually layered over the sand. The overburdens included a muskeg peat, two shallow mineral overburdens and a deep overburden. Mycorrhizal development, microbial respiration and biomass and the degree of decomposition of slender wheatgrass roots in litter bags were determined in each plant species-overburden combination. Both ecto- and vesicular-arbuscular (VA) mycorrhizal inoculum was present in all four overburdens. The symbionts of slender wheatgrass were the "fine endophyte" and Glomus aggregatum. VA development was very low in peat whereas plants in the shallow overburdens became heavily mycorrhizal. Infection did not spread from the overburden layer to roots in the tailing sand. Jack pine roots in the peat and two shallow overburdens were heavily infected after 4 months. The most common symbiont was an ascomycete known as the E-strain. Microbial respiration was highest in the peat and was not influenced by plant species. Microbial biomass was also highest in the peat and much lower in the mineral overburdens. Only in the peat was the amount of microbial biomass larger with slender wheatgrass than with jack pine. Slender wheatgrass roots decomposed most rapidly in the peat overburden and least rapidly in the deep overburden. Key words: Microbial activity, jack pine, slender wheatgrass, mycorrhizae, reclamation, oil sands


Author(s):  
Beata Klimek ◽  
Hanna Poliwka-Modliborek ◽  
Irena M. Grześ

AbstractInteractions between soil fauna and soil microorganisms are not fully recognized, especially in extreme environments, such as long-term metal-polluted soils. The purpose of the study was to assess how the presence of Lasius niger ants affected soil microbial characteristics in a long-term metal-polluted area (Upper Silesia in Poland). Paired soil samples were taken from bulk soil and from ant nests and analysed for a range of soil physicochemical properties, including metal content (zinc, cadmium, and lead). Microbial analysis included soil microbial activity (soil respiration rate), microbial biomass (substrate-induced respiration rate), and bacteria catabolic properties (Biolog® ECO plates). Soil collected from ant nests was drier and was characterized by a lower content of organic matter, carbon and nitrogen contents, and also lower metal content than bulk soil. Soil microbial respiration rate was positively related to soil pH (p = 0.01) and negatively to water-soluble metal content, integrated into TIws index (p = 0.01). Soil microbial biomass was negatively related to TIws index (p = 0.04). Neither soil microbial activity and biomass nor bacteria catabolic activity and diversity indices differed between bulk soil and ant nests. Taken together, ant activity reduced soil contamination by metals in a microscale which support microbial community activity and biomass but did not affect Biolog® culturable bacteria.


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Sign in / Sign up

Export Citation Format

Share Document