422. Data mining: relationship of sperm kinetics and DNA integrity

2008 ◽  
Vol 20 (9) ◽  
pp. 102 ◽  
Author(s):  
K. Osman ◽  
S. Ibrahim ◽  
M. Ismail ◽  
S. Das ◽  
M. Abd Rahman ◽  
...  

Intracytoplasmic sperm injection (ICSI) is a popular technique in treating infertile male that bypasses sperm natural selection. Due to this, the occasional and unintentional use of spermatozoa in ICSI with high amount of DNA fragmentation seems to be unpreventable. The objective of this study was to develop single sperm selection technique and in the process to determine the relationship between sperm kinetic parameters and sperm DNA damage. Semen from sexually matured male Boer buck cross species were collected and cryo-preserved. After taking into consideration semen sperm count, sperm were isolated individually in an ELISA plate by diluting semen in extender. Then every sperm’s kinetics was assessed by computer-assisted sperm analyzer (CASA) while neutral comet assay was used to quantitate and categorise its DNA damage condition. DNA damage was categorised from minimal damage (category 0) to extensive damage (category 4). Relationship between CASA parameters and DNA damage category of 490 sperms was determined using a Classification and Regression modelling (C&R). A total of 208 sperm data was used to generate a suitable C&R model. A further 250 sperm data was then used to determine accuracy of the model. Results obtained indicated that VSL, WOB and VCL were important factors in determining the overall condition of a particular sperm. A low value of VSL would indicate minimal DNA damage. Identification of higher category of DNA damage would require combination assessment of VSL, WOB and VCL. Accuracy of the developed C&R model was at 83.6%. Based on the above procedure it has been shown that sperm kinetics and DNA integrity can be considered together in selecting potential sperm for ICSI procedure.

2018 ◽  
Vol 58 (2) ◽  
pp. 252 ◽  
Author(s):  
L. Fraser ◽  
Ł. Zasiadczyk ◽  
C. S. Pareek

Assessment of sperm-DNA integrity is a crucial issue in male fertility. In the present study, parameters derived from the image analysis of comets after single-cell gel electrophoresis were used to analyse the types of DNA damage of frozen–thawed boar spermatozoa. Semen, frozen in a cryoprotectant-free extender or in cryoprotectant-based extenders, was analysed for DNA fragmentation and with the following comet tail measures: percentage DNA in comet tail, comet tail length and olive tail moment. The percentages of sperm DNA damage in the comet tails were classified as Type 0 (no DNA damage), Type I (very low DNA damage), Type II (light DNA damage), Type III (medium DNA damage) and Type IV (heavy DNA damage). Sperm motility characteristics and membrane integrity were assessed in the pre-freeze and frozen–thawed semen samples. Assessment of sperm DNA fragmentation and comet tail measures showed marked inter-boar variability following cryopreservation. However, consistent differences among the boars, with respect to cryo-induced sperm DNA damage, were detected by the comet tail length and olive tail moment. Besides Type IV, all types of DNA damage were detected in the cryoprotectant-based extenders. It was found that the frequency of Type II and Type III of DNA damage of frozen–thawed spermatozoa was significantly greater in the cryoprotectant-based and cryoprotectant-free extenders respectively. Deterioration in the quality of the sperm DNA integrity was concomitant with a marked decline in sperm motility characteristics, reduced plasma membrane integrity and higher lipid peroxidation and aspartate aminotransferase activity after cryopreservation. It can be suggested that the comet-assay parameters, coupled with routine laboratory tests, are useful to improve the sperm evaluations of post-thaw quality of semen from individual boars and would offer more comprehensive information for a better understanding of the degree of cryo-induced sperm-DNA damage.


2016 ◽  
Vol 28 (10) ◽  
pp. 1598 ◽  
Author(s):  
Kai Zhao ◽  
Yaoping Chen ◽  
Ruifeng Yang ◽  
Yang Bai ◽  
Cuiling Li ◽  
...  

Sperm DNA integrity is an essential factor for accurate transmission of genetic information. Human sperm DNA damage is a common cause of male infertility but the exact mechanism remains poorly understood. Considering the vital role of microRNA (miRNA) in multiple pathophysiological processes, we hypothesised that testicular miRNA is involved in sperm DNA damage during spermatogenesis. Infertile patients with high sperm DNA fragment index (DFI; n = 94) were selected from 1090 infertile men and a total of 18 testis-specific seminal miRNAs previously identified from human seminal plasma were chosen and tested. miR-29c and miR-424 were downregulated in men with high DFI. The inhibition of these two miRNAs in mice confirmed the role of miR-424 (murine homologue miR-322) in sperm DNA damage during spermatogenesis; by contrast, miR-29c exhibited a negative result. Thus, miR-424/322 is involved in sperm DNA damage. Furthermore, the dysregulation of this miRNA can induce DNA double-strand breaks during spermatogenesis.


2012 ◽  
Vol 27 (3) ◽  
pp. 652-658 ◽  
Author(s):  
J. Ribas-Maynou ◽  
A. Garcia-Peiro ◽  
C. Abad ◽  
M. J. Amengual ◽  
J. Navarro ◽  
...  

2013 ◽  
Vol 33 (6) ◽  
pp. 609-622 ◽  
Author(s):  
S Kushwaha ◽  
GB Jena

The aim of the present study is to investigate whether nicotine augmented the testicular toxicity and angiotensin converting enzyme inhibitor, enalapril, can ameliorate the effects in diabetic rat. Male Sprague Dawley rats were randomized into five groups: control, nicotine, diabetic, Diab + Nico, and Diab + Nico + Enal. Animals were made diabetic by single injection of streptozotocin (55 mg/kg/intraperitoneally). Nicotine dissolved in drinking water at a concentration of 100 µg/ml was given ad libitum and enalapril was given orally at a dose of 10 mg/kg/day for four consecutive weeks. After 4 weeks of treatment, animals were killed and biochemical parameters glucose, glycosylated hemoglobin, cotinine, and the testosterone levels were measured. Testicular toxicity was evaluated using sperm count, sperm comet assay, histology, and immunohistochemical staining of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) and the proinflammatory markers (nuclear factor kappa B (NF-κB), cyclooxygenase (COX-2), and tissue necrotic factor alpha (TNF-α)) evaluated by western blotting. Results showed that nicotine did not alter the blood glucose and glycosylated hemoglobin level, significantly decreased the sperm count and increased the sperm DNA damage. These changes were accompanied by significant increases in the 8-oxo-dG, NF-κB, COX-2, and TNF-α expression. Furthermore, the intervention of enalapril in nicotine-treated diabetic rat attenuated the testicular damage and restored sperm count, sperm DNA damage, as well as reduced the expression of NF-κB, COX-2, and TNF-α. These findings clearly suggest that nicotine not only augmented the testicular toxicity in the diabetic rat but also increases the risk of germ cell toxicity effects that were attenuated by enalapril treatment.


2017 ◽  
Vol 9 (13) ◽  
pp. 136
Author(s):  
Farah Hanan Fathihah Jaafar ◽  
Khairul Osman ◽  
Jaya Kumar ◽  
Siti Fatimah Ibrahim

There is no solid conclusion on the conventional sperm parameters in association with alcohol consumption, evaluation of sperm DNA integrity thus become a more reliable parameter. Hereby, this literature search was performed to summarize alcohol consumption on the sperm DNA integrity. A computerized database search was done through MEDLINE via Ovid (since 1946 until August 2017) and Cochrane was used. The following set of keywords: ‘alcohol consumption OR alcohol intake OR alcohol diet OR drinking alcohol OR ethanol diet’ AND ‘sperm DNA OR sperm chromatin OR sperm genome OR sperm histone OR sperm protamine’ were utilised. 24 articles were retrieved where only five studies conform to the inclusion criteria All studies demonstrated a negative effect of alcohol consumption on sperm DNA integrity, regardless of various range of alcohol doses and duration of alcohol consumption. Out of five studies reviewed, four studies were using a different approach to measure the sperm DNA damage. Hereby, this review identified a need to use a single approach of DNA damage test by having various method of alcohol administration and/or vice versa so that the extension of sperm DNA damage to alcohol consumption will have a better conclusion. On the same note, a few studies have reported the reversibility on conventional semen parameters, none has been done on the sperm DNA damage upon alcohol withdrawal. Therefore, the role of alcohol withdrawal on the reversibility of sperm DNA damage needs to be as well investigated further.


Reproduction ◽  
2016 ◽  
Vol 152 (1) ◽  
pp. 57-67 ◽  
Author(s):  
C Fernández-Díez ◽  
S González-Rojo ◽  
M Lombó ◽  
M P Herráez

Zygotic repair of paternal DNA is essential during embryo development. In spite of the interest devoted to sperm DNA damage, its combined effect with defect-repairing oocytes has not been analyzed. Modification of the breeding season is a common practice in aquaculture. This practice reduces developmental success and could affect the both factors: sperm DNA integrity and oocyte repair capacity. To evaluate the maternal role, we analyzed the progeny outcome after fertilizing in-season trout oocytes with untreated and with UV-irradiated sperm. We also analyzed the offspring obtained out of season with untreated sperm. The analysis of the number of lesions in 4 sperm nuclear genes revealed an increase of 1.22–11.18 lesions/10 kb in out-of-season sperm, similar to that obtained after sperm UV irradiation (400 µW/cm25 min). Gene expression showed in out-of-season oocytes the overexpression of repair genes (ogg1, ung, lig3, rad1) and downregulation of tp53, indicating an enhanced repairing activity and reduced capacity to arrest development upon damage. The analysis of the progeny in out-of-season embryos revealed a similar profile tolerant to DNA damage, leading to a much lower apoptotic activity at organogenesis, lower hatching rates and increased rate of malformations. The effects were milder in descendants from in-season-irradiated sperm, showing an enhanced repairing activity at epibolia. Results point out the importance of the repairing machinery provided by the oocyte and show how susceptible it is to environmental changes. Transcripts related to DNA damage signalization and repair could be used as markers of oocyte quality.


2014 ◽  
Vol 29 (10) ◽  
pp. 2148-2155 ◽  
Author(s):  
M. E. McAuliffe ◽  
P. L. Williams ◽  
S. A. Korrick ◽  
R. Dadd ◽  
F. Marchetti ◽  
...  

2016 ◽  
Vol 283 (1826) ◽  
pp. 20152708 ◽  
Author(s):  
Javier delBarco-Trillo ◽  
Olga García-Álvarez ◽  
Ana Josefa Soler ◽  
Maximiliano Tourmente ◽  
José Julián Garde ◽  
...  

Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.


2018 ◽  
Vol 30 (1) ◽  
pp. 210 ◽  
Author(s):  
S. T. Peña ◽  
B. Gummow ◽  
A. J. Parker ◽  
D. B. B. P. Paris

Seasonal heat stress is known to significantly diminish reproductive performance in pigs, particularly in the tropics, costing the industry millions in annual losses. The boar’s reduced capacity to sweat and non-pendulous scrotum, combined with the widespread use of European breeds in the tropics, makes this species particularly vulnerable to heat stress. Although heat stress is traditionally considered a sow problem, recent mouse studies demonstrate that heat stress-induced sperm DNA damage can result in arrested development and loss of early embryos. Our study investigated the impact of tropical summer heat stress on the quality and DNA integrity of boar sperm, and trialled antioxidant supplementation to alleviate the problem. Data, expressed as mean ± SEM, were analysed by one-way repeated-measures ANOVA with pairwise Bonferroni tests. Motility of sperm obtained from Large White boars (n = 5) housed in the dry tropics of Townsville, North Queensland, Australia, was characterised by computer-assisted sperm analysis but did not differ between summer, winter, or spring (total motility: 71.3 ± 8.1 v. 90.2 ± 4.2 v. 70.8 ± 5.5%, respectively; P > 0.05; progressive motility: 35.4 ± 7.0 v. 46.6 ± 4.0 v. 41.7 ± 2.8%, respectively; P > 0.05). Sperm DNA integrity in 20,000 sperm/boar per season, evaluated using TUNEL and flow cytometry, revealed 16-fold more DNA-damaged sperm in summer than winter, and nearly 9-fold more than spring (16.1 ± 4.8 v. 1.0 ± 0.2 v. 1.9 ± 0.5%, respectively; P ≤ 0.05). However, boar feed supplemented with 100 g/boar per day of proprietary custom-made antioxidants during summer significantly reduced sperm DNA damage to 9.9 ± 4.5% and 7.2 ± 1.6% (P ≤ 0.05) after 42 and 84 days of treatment respectively. Total and progressive motility were not altered by the supplement. In summary, sperm DNA integrity is compromised in boars during summer, suggesting that boar factors may contribute to seasonal embryo loss in sows. Moreover, such damage appears undetectable using traditional measures of sperm motility. Antioxidant supplementation during summer appears to mitigate the negative impact of heat stress on sperm DNA integrity.


Sign in / Sign up

Export Citation Format

Share Document