Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin

2009 ◽  
Vol 18 (7) ◽  
pp. 755 ◽  
Author(s):  
Imma Oliveras ◽  
Marc Gracia ◽  
Gerard Moré ◽  
Javier Retana

In Mediterranean ecosystems, large fires frequently burn under extreme meteorological conditions, but they are usually characterized by a spatial heterogeneity of burn severities. The way in which such mixed-severity fires are a result of fuels, topography and weather remains poorly understood. We computed fire severity of a large wildfire that occurred in Catalonia, Spain, as the difference between the post- and pre-fire Normalized Difference Vegetation Index (NDVI) values obtained through Landsat images. Fuel and topographic variables were derived from remote sensing, and fire behavior variables were obtained from an exhaustive reconstruction of the fire. Results showed that fire severity had a negative relationship with percentage of canopy cover, i.e. green surviving plots were mainly those with more forested conditions. Of the topographic variables, only aspect had a significant effect on fire severity, with higher values in southern than in northern slopes. Fire severity was higher in head than in flank and back fires. The interaction of these two variables was significant, with differences between southern and northern aspects being small for head fires, but increasing in flank and back fires. The role of these variables in determining the pattern of fire severities is of primary importance for interpreting the current landscapes and for establishing effective fire prevention and extinction policies.

2017 ◽  
Vol 26 (45) ◽  
Author(s):  
Michael Ezequiel Gómez-Rodríguez ◽  
Francisco José Molina-Pérez ◽  
Diana María Agudelo-Echavarría ◽  
Julio Eduardo Cañón-Barriga ◽  
Fabio De Jesús Vélez-Macías

The municipality of Nechí (Antioquia, Colombia) has a long mining history associated with the extraction of gold. This paper evaluates the evolution of land cover changes caused by this mining activity over 24 years. The spatial analysis was based on the Normalized Difference Vegetation Index (NDVI) of three LANDSAT images (1986, 1996 and 2010). The difference in NDVI values between 1986 and 2010 were used to determine the actual state of vegetation, the direction of change (improvement, stability or deterioration), and the area associated with each soil cover. Polygons for different types of coverage (forest, pasture, bare soil, and water bodies) were extracted from each satellite image to quantify the changes and develop land cover maps for each year. Results show that almost 124.8 km² of forest have been lost during the analyzed period. By contrast, water bodies gained an area of 66.3 km². Both results may be related to the type of gold exploitation in the region.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


2021 ◽  
Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.


2018 ◽  
Vol 63 ◽  
pp. 00017
Author(s):  
Michał Lupa ◽  
Katarzyna Adamek ◽  
Renata Stypień ◽  
Wojciech Sarlej

The study examines how LANDSAT images can be used to monitor inland surface water quality effectively by using correlations between various indicators. Wigry lake (area 21.7 km2) was selected for the study as an example. The study uses images acquired in the years 1990–2016. Analysis was performed on data from 35 months and seven water condition indicators were analyzed: turbidity, Secchi disc depth, Dissolved Organic Material (DOM), chlorophyll-a, Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI). The analysis of results also took into consideration the main relationships described by the water circulation cycle. Based on the analysis of all indicators, clear trends describing a systematic improvement of water quality in Lake Wigry were observed.


2019 ◽  
Vol 11 (23) ◽  
pp. 2757 ◽  
Author(s):  
Akash Ashapure ◽  
Jinha Jung ◽  
Anjin Chang ◽  
Sungchan Oh ◽  
Murilo Maeda ◽  
...  

This study presents a comparative study of multispectral and RGB (red, green, and blue) sensor-based cotton canopy cover modelling using multi-temporal unmanned aircraft systems (UAS) imagery. Additionally, a canopy cover model using an RGB sensor is proposed that combines an RGB-based vegetation index with morphological closing. The field experiment was established in 2017 and 2018, where the whole study area was divided into approximately 1 x 1 m size grids. Grid-wise percentage canopy cover was computed using both RGB and multispectral sensors over multiple flights during the growing season of the cotton crop. Initially, the normalized difference vegetation index (NDVI)-based canopy cover was estimated, and this was used as a reference for the comparison with RGB-based canopy cover estimations. To test the maximum achievable performance of RGB-based canopy cover estimation, a pixel-wise classification method was implemented. Later, four RGB-based canopy cover estimation methods were implemented using RGB images, namely Canopeo, the excessive greenness index, the modified red green vegetation index and the red green blue vegetation index. The performance of RGB-based canopy cover estimation was evaluated using NDVI-based canopy cover estimation. The multispectral sensor-based canopy cover model was considered to be a more stable and accurately estimating canopy cover model, whereas the RGB-based canopy cover model was very unstable and failed to identify canopy when cotton leaves changed color after canopy maturation. The application of a morphological closing operation after the thresholding significantly improved the RGB-based canopy cover modeling. The red green blue vegetation index turned out to be the most efficient vegetation index to extract canopy cover with very low average root mean square error (2.94% for the 2017 dataset and 2.82% for the 2018 dataset), with respect to multispectral sensor-based canopy cover estimation. The proposed canopy cover model provides an affordable alternate of the multispectral sensors which are more sensitive and expensive.


2013 ◽  
Vol 91 (11) ◽  
pp. 820-828 ◽  
Author(s):  
Guillaume Bastille-Rousseau ◽  
James A. Schaefer ◽  
Shane P. Mahoney ◽  
Dennis L. Murray

Many populations of caribou (Rangifer tarandus (L., 1758)) across North America, including Newfoundland, are in a state of decline. This phenomenon may reflect continental-scale changes in either the extrinsic or the intrinsic factors affecting caribou abundance. We hypothesized that caribou decline reflected marked resource limitation and predicted that fluctuations should correspond to time-delayed density dependence associated with a decline in range quality and decadal trends in winter severity. By conducting time-series analysis using 12 populations and evaluating correlations between caribou abundance and trends in (i) vegetation available at calving (normalized difference vegetation index, NDVI), (ii) winter weather severity (index of North Atlantic Oscillation, NAO), and (iii) caribou morphometrics, we observed strong evidence of density dependence in population dynamics (i.e., a negative relationship between caribou population size and caribou morphometrics). Caribou population trajectories were time-delayed relative to winter severity, but not relative to calving-ground greenness. These island-wide correlations could not be traced to dispersal between herds, which appears rare at least for adult females. Our results suggest that trends in winter severity may synchronize broad-scale changes in caribou abundance that are driven by time-delayed density dependence, although it remains possible that calving-ground deterioration also may contribute to population limitation in Newfoundland. Our findings provide the basis for additional research into density dependence and caribou population decline.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 940
Author(s):  
Rocío Ballesteros ◽  
Miguel A. Moreno ◽  
Fellype Barroso ◽  
Laura González-Gómez ◽  
José F. Ortega

The availability of a great amount of remote sensing data for precision agriculture purposes has set the question of which resolution and indices, derived from satellites or unmanned aerial vehicles (UAVs), offer the most accurate results to characterize vegetation. This study focused on assessing, comparing, and discussing the performances and limitations of satellite and UAV-based imagery in terms of canopy development, i.e., the leaf area index (LAI), and yield, i.e., the dry aboveground biomass (DAGB), for maize. Three commercial maize fields were studied over four seasons to obtain the LAI and DAGB. The normalized difference vegetation index (NDVI) and visible atmospherically resistant index (VARI) from satellite platforms (Landsat 5TM, 7 ETM+, 8OLI, and Sentinel 2A MSI) and the VARI and green canopy cover (GCC) from UAV imagery were compared. The remote sensing predictors in addition to the growing degree days (GDD) were assessed to estimate the LAI and DAGB using multilinear regression models (MRMs). For LAI estimation, better adjustments were obtained when predictors from the UAV platform were considered. The DAGB estimation revealed similar adjustments for both platforms, although the Landsat imagery offered slightly better adjustments. The results obtained in this study demonstrate the advantage of remote sensing platforms as a useful tool to estimate essential agronomic features.


2021 ◽  
Vol 13 (1) ◽  
pp. 1561-1577
Author(s):  
Sajjad Hussain ◽  
Muhammad Mubeen ◽  
Ashfaq Ahmad ◽  
Nasir Masood ◽  
Hafiz Mohkum Hammad ◽  
...  

Abstract The rapid increase in urbanization has an important effect on cropping pattern and land use/land cover (LULC) through replacing areas of vegetation with commercial and residential coverage, thereby increasing the land surface temperature (LST). The LST information is significant to understand the environmental changes, urban climatology, anthropogenic activities, and ecological interactions, etc. Using remote sensing (RS) data, the present research provides a comprehensive study of LULC and LST changes in water scarce and climate prone Southern Punjab (Multan region), Pakistan, for 30 years (from 1990 to 2020). For this research, Landsat images were processed through supervised classification with maps of the Multan region. The LULC changes showed that sugarcane and rice (decreased by 2.9 and 1.6%, respectively) had less volatility of variation in comparison with both wheat and cotton (decreased by 5.3 and 6.6%, respectively). The analysis of normalized difference vegetation index (NDVI) showed that the vegetation decreased in the region both in minimum value (−0.05 [1990] to −0.15 [2020]) and maximum value (0.6 [1990] to 0.54 [2020]). The results showed that the built-up area was increased 3.5% during 1990–2020, and these were some of the major changes which increased the LST (from 27.6 to 28.5°C) in the study area. The significant regression in our study clearly shows that NDVI and LST are negatively correlated with each other. The results suggested that increasing temperature in growing period had a greatest effect on all types of vegetation. Crop-based classification aids water policy managers and analysts to make a better policy with enhanced information based on the extent of the natural resources. So, the study of dynamics in major crops and surface temperature through satellite RS can play an important role in the rural development and planning for food security in the study area.


2019 ◽  
Vol 12 (4) ◽  
pp. 175-187
Author(s):  
Thanh Tien Nguyen

The objective of the study is to assess changes of fractional vegetation cover (FVC) in Hanoi megacity in period of 33 years from 1986 to 2016 based on a two endmember spectral mixture analysis (SMA) model using multi-spectral and multi-temporal Landsat-5 TM and -8 OLI images. Landsat TM/OLI images were first radiometrically corrected. FVC was then estimated by means of a combination of Normalized Difference Vegetation Index (NDVI) and classification method. The estimated FVC results were validated using the field survey data. The assessment of FVC changes was finally carried out using spatial analysis in GIS. A case study from Hanoi city shows that: (i) the proposed approach performed well in estimating the FVC retrieved from the Landsat-8 OLI data and had good consistency with in situ measurements with the statistically achieved root mean square error (RMSE) of 0.02 (R 2 =0.935); (ii) total FVC area of 321.6 km 2 (accounting for 9.61% of the total area) was slightly reduced in the center of the city, whereas, FVC increased markedly with an area of 1163.6 km 2 (accounting for 34.78% of the total area) in suburban and rural areas. The results from this study demonstrate the combination of NDVI and classification method using Landsat images are promising for assessing FVC change in megacities.


Sign in / Sign up

Export Citation Format

Share Document