Ecological impacts of feral pig diggings in north Queensland rainforests

2007 ◽  
Vol 34 (8) ◽  
pp. 603 ◽  
Author(s):  
J. Mitchell ◽  
W. Dorney ◽  
R. Mayer ◽  
J. McIlroy

This two-year study examined the impacts of feral pig diggings on five ecological indicators: seedling survival, surface litter, subsurface plant biomass, earthworm biomass and soil moisture content. Twelve recovery exclosures were established in two habitats (characterised by wet and dry soil moisture) by fencing off areas of previous pig diggings. A total of 0.59 ha was excluded from further pig diggings and compared with 1.18 ha of unfenced control areas. Overall, seedling numbers increased 7% within the protected exclosures and decreased 37% within the unprotected controls over the two-year study period. A significant temporal interaction was found in the dry habitat, with seedling survival increasing with increasing time of protection from diggings. Feral pig diggings had no significant effect on surface litter biomass, subsurface plant biomass, earthworm biomass or soil moisture content.

2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


Author(s):  
E. K. Kago ◽  
Z. M. Kinyua ◽  
J. M. Maingi ◽  
P. O. Okemo

Aims: This study was carried out to evaluate the influence of organic and inorganic soil amendments on soil moisture content and micronutrients in semi and arid areas.   Methodology: The study was laid out as randomized complete block design (RCBD) in split plot arrangement for two seasons. The treatments were ChalimTM, Super-hydro-grow polymer and Metham sodium, Metham sodium, Metham sodium + Orange peel, Super-hydro-grow polymer, Control, Brassica tissue, ChalimTM + Super-hydro-grow polymer, Brassica tissue + Orange peel and Metham sodium + Super-hydro-grow polymer. Soils were sampled from each experimental site, dried and taken to laboratories for determination of Zinc, Iron, Manganese and copper both at initial and at the end of the experiment using a SpectrAA- 40 atomic absorption spectrometer, PSC-56 programmable sample changer. Moisture content was calculated by subtracting total dry soil plus Petri dish weight from total wet soil plus Petri dish weight. Calculated moisture content was recorded in all samples across the two seasons for analysis. Results: There was a significant difference (p≤0.05) in the treatment effect on soil moisture content in except for MS and CM+OP in both season one and season two in the green house. A combination of both organic and inorganic soil amendments like BT+OP, BT+ SHG had the highest moisture content. There was significant difference (p≤0.05) in the soil amendments effect on the amount of Micronutrients in the beginning and end of the experiement. Conclusion: Through this study, it was realized significant difference (p≤0.05) in the soil amendments effect on soil moisture content in all the treatment in both seasons. BT +SHG soil amendment was superior in maintaining soil moisture content in both season 1 and 2. It is therefore recommended that Metham sodium should not be applied in very dry soil to avoid reduction of the moisture content. There was micronutrient increment in all the treatments. BT+ SHG was superior soil amendment in increment of micronutrients.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 148 ◽  
Author(s):  
Michael O’Flynn ◽  
John Finnan ◽  
Edna Curley ◽  
Kevin McDonnell

Harvesting Miscanthus × giganteus (J.M. Greef & Deuter ex Hodkinson & Renvoize) after shoot emergence is known to reduce yields in subsequent seasons. This research was conducted in Miscanthus to assess the effects on crop response and soil compaction of annually repeated traffic, applied both before new growth in the rhizomes (early harvest) and after shoot emergence (late harvest), at two different soil moisture contents. While an annual early harvest, yields more than a late harvest, because damage to new shoots is avoided, soil compaction may be increased following repeated harvests. Five treatments were tested: (a) An untrafficked control, (b) early-traffic on soil with typical soil moisture content (SMC) (early-normal), (c) early-traffic on soil with elevated SMC (early-elevated), (d) late-traffic on soil with typical SMC (late-normal) and (e) late-traffic on soil with elevated SMC (late-wet). The experiment was conducted on a Gleysol in Co. Dublin, Ireland during 2010 and 2011. Crop response effects were assessed by measuring stem numbers, stem height, trafficked zone biomass yield (November) and overall stem yield (January). Compaction effects were assessed by measuring penetration resistance, bulk density and water infiltration rate. Trafficked zone biomass yield in the early-dry and early-wet treatments was, respectively, 18% and 23% lower than in the control, but was, respectively, 39% and 31% higher than in the late-dry treatment. Overall, stem yield was significantly lower in the late-normal and late-wet treatments (10.4 and 10.1 tdm ha−1 respectively) when compared with the control (12.4 tdm ha−1), but no significant difference was recorded in overall stem yield between both early-traffic treatments and the control. Penetration resistance values were significantly higher in all trafficked treatments when compared with the control at depths of 0.15 m (≥54–61%) and 0.30 m (≥27–57%) and were significantly higher in 2011 when compared with 2010 at depths of 0.15 and 0.30 m. Baler system traffic in Miscanthus significantly reduced yields and significantly increased compaction annually. Miscanthus harvested early, on a dry soil, yielded 1.1 tdm ha−1 more than when harvested late on a dry soil. The yield advantage increased to 1.3 tdm ha−1 when early harvesting on a soil with 40–43% moisture content was compared with late harvesting on a wetter soil (51–52% moisture content). In this study, the magnitude of yield losses from compaction or other causes in early harvests was substantially lower than the yield losses, which resulted from shoot damage in late harvests. It is likely in similar climates that the results of this study would also apply to other perennial crops growing in similar soil types.


1938 ◽  
Vol 16c (5) ◽  
pp. 203-213 ◽  
Author(s):  
G. B. Sanford

The effects of soil temperatures between 16° and 25 °C., and of soil moisture content between 19 and 40% of the moisture-holding capacity, on the virulence and type of attack of Rhizodonia Solani on young potato sprouts, were studied under controlled conditions and the results from 13 separate tests are discussed. The comparative growth rates of the pathogen on nutrient agar and in soil are outlined.At 25 °C. the disease diminished very abruptly. Between 23° and 16 °C., the pathogen appeared equally virulent throughout the range of soil moisture mentioned. The fluctuations which occurred in separate tests were not definite or consistent enough to warrant a conclusion that the virulence is greater at 16° than at 23°, or that a dry soil is more or less favorable to it than a wet one.In a fertile, steam sterilized loam, at medium moisture content, it required about ten days for the pathogen to grow as far as it did on the surface of a nutrient medium in four days. The growth rate at either 23° or 16 °C. was slightly higher in a wet soil than in one of medium moisture content, but in a dry soil the rate was somewhat less at 23° than at 16° in a medium or wet soil. Even in a fairly dry soil (19% moisture-holding capacity) at 16° the growth of the pathogen covered a distance of 5 cm. in ten days, which would appear adequate for infection of young sprouts from a set bearing viable sclerotia.The effort of the host to recover, by means of secondary and tertiary sprouts from the attacked primary sprout, was better in a wet soil than in a dry one at both 16° and 23 °C. The best effort was in a wet soil at 23°. A distinction is made between the effects of soil moisture and temperature in stimulating growth of the host, and their effect on parasitism itself.The remarkable tendency of the secondary sprouts to escape infection, regardless of soil temperature and soil moisture, is indicated. There was evidence that certain factors other than soil temperature and moisture may play an important role in the parasitism of R. Solani.


2012 ◽  
Vol 610-613 ◽  
pp. 385-389
Author(s):  
Ying Ying Zheng ◽  
Xin Shan Song ◽  
Xiao Xiang Zhao

More frequently drying-rewetting is likely to be expected for soils this century, with strong effect on nitrogen transformation. Experiments were conducted in semi-disturbed soils which were incubated under 4 different moisture regimes (dry wet\constant wet\constant dry\constant flooded) for 71 d. The results show that the dry soil has a rapid NO3--N increase after rewetting. Drying-rewetting increases soil nitrification which shows a "pulse" increasing. The drying and rewetting soil has the highest nitrification intensity when the soil moisture content (g/g) ranging at 15.82% ~ 17.06%. Drying-rewetting contributes to the accumulation of NO3--N.


2020 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Nor Syakina Johari ◽  
Asila Abdul Mutalib ◽  
Zalina Ismail ◽  
Fazhana Ismail ◽  
Zahidah Ab Latif ◽  
...  

An experiment was conducted to determine the effects of fish amino acid (FAA) application on growth and development of okra (Abelmoschus esculentus) with different sampling times. It was placed at Soil Science Laboratory, Blok Pakar at the Universiti Pendidikan Sultan Idris (UPSI). The okra plant was treated with a different amount of FAA (5 mL and 10 mL). Total of experimental units were 24. The used experimental design was Randomised Complete Block Design (RCBD). The parameters such as root length, shoot length, plant biomass, soil pH and soil moisture content were analysed after 2 weeks and 4 weeks of transplanting. The data was analysed by using Analysis of Variance (ANOVA), Statistical Package for the Social Sciences (SPSS) and means comparison were using Tukey HSD test with significant level (P≤0.05). Results showed that FAA application and different sampling times were significantly affected the shoot length of okra. Besides, the volume of FAA and the number of weeks were significantly affected the soil pH and the soil moisture content, respectively. However, the addition of FAA application did not affect the root length and plant biomass of okra.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Sign in / Sign up

Export Citation Format

Share Document