An economic decision model of wild rabbit Oryctolagus cuniculus control to conserve Australian native vegetation

2010 ◽  
Vol 37 (7) ◽  
pp. 558 ◽  
Author(s):  
Brian Cooke ◽  
Randall Jones ◽  
Wendy Gong

Context Economic decision models are seldom used in developing policies for the cost-effective control of invasive species that threaten natural ecosystems. However, their potential value is shown using an example of European rabbits damaging native vegetation in Australia. Aims To better define the problem of rabbit damage, provide a sound theoretical basis for implementing cost-efficient strategies for rabbit control and show how resources available for ecosystem protection can be most effectively applied. Methods A dynamic economic decision model was developed, incorporating the costs and effectiveness of three methods for controlling rabbits among native vegetation to consider alternative management strategies. A monetary value on native vegetation was set using the ‘avoided’ cost of replanting trees on roadsides and from field data we described how capacity of plant communities to regenerate improves if rabbit numbers are reduced. Key results Model outputs indicated the best combinations of methods for cost-effective rabbit control and showed how the highest benefits could be gained in protecting natural vegetation. Conclusions The model provided a framework for deciding how limited resources might be used to greatest benefit for protecting native vegetation. Implications This methodology could apply to other invasive species, provided that natural assets can be given a justifiable monetary value, control costs and effectiveness can be determined and the impact of the pests on assets can be modelled as dynamic population processes.

2017 ◽  
Vol 88 (6) ◽  
pp. E507-E511 ◽  
Author(s):  
Sopany Saing ◽  
Phil Haywood ◽  
Joanna K. Duncan ◽  
Ning Ma ◽  
Alun L. Cameron ◽  
...  

2005 ◽  
Vol 52 (3) ◽  
pp. 355-366 ◽  
Author(s):  
Eric R. Buhle ◽  
Michael Margolis ◽  
Jennifer L. Ruesink

2021 ◽  
Vol 13 (23) ◽  
pp. 13007
Author(s):  
Johanna Leväsluoto ◽  
Johanna Kohl ◽  
Anton Sigfrids ◽  
Jussi Pihlajamäki ◽  
Janne Martikainen

Grand social challenges, such as type 2 diabetes (T2D), are increasing, which creates sustainability problems for health care service systems. To reduce socio-economic burdens, changes are required in the socio-technical system. However, there is an uncertainty of the most cost-effective policy action that can create sustainability while providing health benefits. To find potential solutions to these challenges, the multi-level perspective (MLP) and health economic decision modelling was used to study socio-technical change and project potential health economic consequences of different scenarios. The study focuses on creating a vision pathway for reducing T2D in Finland. In total, 23 interviews were carried out and the results were analyzed utilizing the MLP model. As a result, five themes towards prevention of T2D were identified. Digitalization was found to be a cross-cutting theme for preventing T2D and was thus taken as the object of study and the main focus of this paper. As a result, this paper reports on the opportunities and barriers for using digital tools in a transition towards T2D prevention. A health economic decision modelling revealed that the highest expected savings could be obtained by prioritizing prevention programs based on T2D risk. Finally, the model was converted into a web-based online tool by combining vision pathway, transition-focused storylines and forward-looking health economic scenario analysis to give the policy makers an overall picture of the needed societal changes and support the impact assessment of alternative policies in a case of T2D prevention in Finland.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1080-1103 ◽  
Author(s):  
Frank N. Martin ◽  
Z. Gloria Abad ◽  
Yilmaz Balci ◽  
Kelly Ivors

With the increased attention given to the genus Phytophthora in the last decade in response to the ecological and economic impact of several invasive species (such as P. ramorum, P. kernoviae, and P. alni), there has been a significant increase in the number of described species. In part, this is due to the extensive surveys in historically underexplored ecosystems (e.g., forest and stream ecosystems) undertaken to determine the spread of invasive species and the involvement of Phytophthora species in forest decline worldwide (e.g., oak decline). The past decade has seen an approximate doubling in the number of described species within the genus Phytophthora, and the number will likely continue to increase as more surveys are completed and greater attention is devoted to clarifying phylogenetic relationships and delineating boundaries in species complexes. The development of molecular resources, the availability of credible sequence databases to simplify identification of new species, and the sequencing of several genomes have provided a solid framework to gain a better understanding of the biology, diversity, and taxonomic relationships within the genus. This information is much needed considering the impact invasive or exotic Phytophthora species have had on natural ecosystems and the regulatory issues associated with their management. While this work is improving our ability to identify species based on phylogenetic grouping, it has also revealed that the genus has a much greater diversity than previously appreciated.


Author(s):  
C. L. Mallmann ◽  
A. F. Zaninni ◽  
W. Pereira Filho

Abstract. The biological invasion is considered the second largest global threat to the maintenance and conservation of natural ecosystems biodiversity. Strategies and actions that guide the control and monitoring of invasive species in protected areas are still a challenge on the management of these areas. Remote sensing is potential tool to detect and monitoring these species, gaining a timeline scale and allowing the adoption of more effective control methods. In this study, search to evaluate the vegetation index potential by using multispectral images acquired by UAV as a support on detection and monitoring of invasive plants in Quarta Colônia State Park located on the Brazil’s southern region. A sampling area with a density of invasive plants above 80% was evaluated, with predominance of Psidium guajava and Ligustrum lucidum, generating a large data set from the extracted indexes. Among the evaluated index, the ones that showed the most potential in this study were Green Normalized Difference Vegetation Index (GNDVI), Plant Senescence Reflectance Index (PSRI) and Red Green Ratio Index (RGRI). Believe us that the use of UAVs platforms will be an important tool for the management of invasive species in protected areas.


Author(s):  
Gonçalo Silva ◽  
Jenny Tomlinson ◽  
Nawaporn Onkokesung ◽  
Sarah Sommer ◽  
Latifa Mrisho ◽  
...  

Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.


2015 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Pedro Sousa

Nowadays, many P2P applications proliferate in the Internet. The attractiveness of many of these systems relies on the collaborative approach used to exchange large resources without the dependence and associated constraints of centralized approaches where a single server is responsible to handle all the requests from the clients. As consequence, some P2P systems are also interesting and cost-effective approaches to be adopted by content providers and other Internet players. However, there areseveral coexistence problems between P2P applications and Internet Service Providers (ISPs) due to the unforeseeable behavior of P2P traffic aggregates in ISP infrastructures.In this context, this work proposes a collaborative P2P/ISPsystem able to underpin the development of novel Traffic Engineering (TE) mechanisms contributing for a better coexistence between P2P applications and ISPs. Using the devised system, two TE methods are described being able to estimate and control the impact of P2P traffic aggregates on the ISP network links. One of the TE methods allows that ISP administrators are able to foresee the expected impact that a given P2P swarm will have in the underlying network infrastructure. The other TE method enables the definition of ISP friendly P2P topologies, where specific network links are protected from P2P traffic. As result, the proposed system and associated mechanisms will contributefor improved ISP resource management tasks and to foster the deployment of innovative ISP-friendly systems.


2020 ◽  
Author(s):  
Giordano Bruno Soares-Souza ◽  
Danielle Amaral ◽  
Daniela Batista ◽  
André Q. Torres ◽  
Anna Carolini Silva Serra ◽  
...  

AbstractCorals have been attracting huge attention due to the impact of climate change and ocean acidification on reef formation and resilience. Nevertheless, some species like Tubastraea coccinea and T. tagusensis have been spreading very fast replacing the native ones which affect the local environment and decrease biodiversity of corals and other organisms associated with them. Despite some focal efforts to understand the biology of these organisms, they remain understudied at the molecular level. This knowledge gap hinders the development of cost-effective strategies for both conservation and management of invasive species. In this circumstance, it is expected that genome sequencing would provide powerful insights that could lead to better strategies for prevention, management, and control of this and other invasive species. Here, we present three genomes of Tubastraea spp. in one of the most comprehensive biological studies of corals, that includes flow cytometry, karyotyping, transcriptomics, genomics, and phylogeny. The genome of T. tagusensis is organized in 23 chromosomes pairs and has 1.1 Gb, the T. coccinea genome is organized in 22 chromosome pairs and has 806 Mb, and the Tubastraea sp. genome is organized in 21 chromosome pairs and has 795 Mb. The hybrid assembly of T. tagusensis using short and long-reads has a N50 of 227,978 bp, 7,996 contigs and high completeness estimated as 91.6% of BUSCO complete genes, of T. coccinea has a N50 of 66,396 bp, 17,214 contigs and 88.1% of completeness, and of Tubastraea sp. has a N50 of 82,672 bp, 12,922 contigs and also 88.1% of completeness. We inferred that almost half of the genome consists of repetitive elements, mostly interspersed repeats. We provide evidence for exclusive Scleractinia and Tubastraea gene content related to adhesion and immunity. The Tubastraea spp. genomes are a fundamental study which promises to provide insights not only about the genetic basis for the extreme invasiveness of this particular coral genus, but to understand the adaptation flaws of some reef corals in the face of anthropic-induced environmental disturbances. We expect the data generated in this study will foster the development of efficient technologies for the management of coral species, whether invasive or threatened.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 519-532 ◽  
Author(s):  
Mark Crisp ◽  
Richard Riehle

Polyaminopolyamide-epichlorohydrin (PAE) resins are the predominant commercial products used to manufacture wet-strengthened paper products for grades requiring wet-strength permanence. Since their development in the late 1950s, the first generation (G1) resins have proven to be one of the most cost-effective technologies available to provide wet strength to paper. Throughout the past three decades, regulatory directives and sustainability initiatives from various organizations have driven the development of cleaner and safer PAE resins and paper products. Early efforts in this area focused on improving worker safety and reducing the impact of PAE resins on the environment. These efforts led to the development of resins containing significantly reduced levels of 1,3-dichloro-2-propanol (1,3-DCP) and 3-monochloropropane-1,2-diol (3-MCPD), potentially carcinogenic byproducts formed during the manufacturing process of PAE resins. As the levels of these byproducts decreased, the environmental, health, and safety (EH&S) profile of PAE resins and paper products improved. Recent initiatives from major retailers are focusing on product ingredient transparency and quality, thus encouraging the development of safer product formulations while maintaining performance. PAE resin research over the past 20 years has been directed toward regulatory requirements to improve consumer safety and minimize exposure to potentially carcinogenic materials found in various paper products. One of the best known regulatory requirements is the recommendations of the German Federal Institute for Risk Assessment (BfR), which defines the levels of 1,3-DCP and 3-MCPD that can be extracted by water from various food contact grades of paper. These criteria led to the development of third generation (G3) products that contain very low levels of 1,3-DCP (typically <10 parts per million in the as-received/delivered resin). This paper outlines the PAE resin chemical contributors to adsorbable organic halogens and 3-MCPD in paper and provides recommendations for the use of each PAE resin product generation (G1, G1.5, G2, G2.5, and G3).


Sign in / Sign up

Export Citation Format

Share Document