Refuge site selection by the eastern chestnut mouse in recently burnt heath

2011 ◽  
Vol 38 (4) ◽  
pp. 290 ◽  
Author(s):  
F. Pereoglou ◽  
C. Macgregor ◽  
S. C. Banks ◽  
F. Ford ◽  
J. Wood ◽  
...  

Context Temporal reduction in shelter is an indirect primary impact of fire. Removal of animal refugia has implications for shelter site selection and fidelity – factors that have been largely overlooked in studies of Australian rodent fauna. This information is critical for guiding species conservation and appropriate land management including prescribed burning practices. Aims We sought to determine which features of burnt heath were selected as shelter sites by the eastern chestnut mouse, whether there was sex and/or seasonal variation in shelter site selection and whether we could identify primary refugia. Methods We completed a radio-telemetry study to identify diurnal refuge sites and compare habitat attributes with those of a matched set of control sites. We then used habitat features and fidelity parameters to classify refuge site use. Key results We found the eastern chestnut mouse selected shelters with the presence of specific structures and had taller, denser vegetation than randomly selected control sites. There were no differences in habitat selection between the sexes. Shelter sites in the non-breeding season had greater vegetation density compared with those used in the breeding season. In the breeding season, the eastern chestnut mouse showed no evidence of increased fidelity to particular refuges. Vegetation density in winter was the best predictor of a primary refuge compared with whether or not an animal returned to a shelter site or the amount of time spent in a shelter site. Mice were ephemeral and non-gregarious in their refuge use. There was some evidence for inheritance of refuge sites from a parent, as well as inter-season shelter site fidelity. Conclusions The eastern chestnut mouse selected refugia that had habitat attributes offering maximum protection. Seasonality in refuge site selection is likely to reflect the reproductive and environmental trade-offs in critical resources during different seasons. The maintenance of multiple, rarely occupied shelters by the eastern chestnut mouse is consistent with data for other mammals. Implications Fire management should ensure retention of vegetation structure on the ground layer, dense habitat patches in burned areas, and be carefully planned during the winter season to maintain shelter and refuge sites to assist population persistence.

2003 ◽  
Vol 13 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Johel Chaves-Campos ◽  
J. Edgardo Arévalo ◽  
Mariamalia Araya

Bare-necked Umbrellabird Cephalopterus glabricollis is endemic to Costa Rica and western Panama. It eats fruit, breeding at high elevations (≥ 800 m) and migrating to lower elevations during the non-breeding season. Using data from transect counts and radio-telemetry, we monitored bird movements in a protected area (Monteverde–Arenal–San Ramón reserves) in the Tilarán Mountains, Costa Rica. We also monitored fruit abundance along an altitudinal gradient to explore the potential relationship between bird movements and the abundance of the fruits this species consumed. The presence and abundance of umbrellabirds at high elevations (1,400 m) during the breeding season (March–June) coincided with the highest peak of fruit abundance. The presence of umbrellabirds in the lowlands (400 m) during the non-breeding season overlapped with the period of highest fruit abundance at these elevations. At middle elevations, bird presence and abundance did not correlate with fruit abundance. Radio-tagged birds left the protected area during the non-breeding season and there were no umbrellabirds inside the protected area during this period. Habitats where this species bred were well represented in the protected area but the habitat where they spent the non-breeding season was poorly represented, and was not adequately protected. This represents a potential threat to this species in the Tilarán Mountains.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Robert A. York ◽  
Jacob Levine ◽  
Kane Russell ◽  
Joseph Restaino

Abstract Background Young, planted forests are particularly vulnerable to wildfire. High severity effects in planted forests translate to the loss of previous reforestation investments and the loss of future ecosystem service gains. We conducted prescribed burns in three ~35-year-old mixed conifer plantations that had previously been masticated and thinned during February in order to demonstrate the effectiveness of winter burning, which is not common in the Sierra Nevada, California. Results On average, 59% of fine fuels were consumed and the fires reduced shrub cover by 94%. The average percent of crown volume that was damaged was 25%, with no mortality observed in overstory trees 1 year following the fires. A plot level analysis of the factors of fire effects did not find strong predictors of fuel consumption. Shrub cover was reduced dramatically, regardless of the specific structure that existed in plots. We found a positive relationship between crown damage and the two variables of Pinus ponderosa relative basal area and shrub cover. But these were not particularly strong predictors. An analysis of the weather conditions that have occurred at this site over the past 20 years indicated that there have consistently been opportunities to conduct winter burns. On average, 12 days per winter were feasible for burning using our criteria. Windows of time are short, typically 1 or 2 days, and may occur at any time during the winter season. Conclusions This study demonstrates that winter burning can be an important piece of broader strategies to reduce wildfire severity in the Sierra Nevada. Preparing forest structures so that they can be more feasible to burn and also preparing burn programs so that they can be nimble enough to burn opportunistically during short windows are key strategies. Both small landowners and large agencies may be able to explore winter burning opportunities to reduce wildfire severity.


2014 ◽  
Vol 71 (10) ◽  
pp. 1498-1507 ◽  
Author(s):  
Steven M. Clark ◽  
Jason B. Dunham ◽  
Jeffrey R. McEnroe ◽  
Scott W. Lightcap

The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.


2019 ◽  
Vol 40 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Benjamin Michael Marshall ◽  
Colin Thomas Strine ◽  
Max Dolton Jones ◽  
Taksin Artchawakom ◽  
Ines Silva ◽  
...  

Abstract A species’ spatial ecology has direct implications for that species’ conservation. Far-ranging species may be more difficult to conserve because their movements increase their chances of encountering humans. The movements can take them out of protected areas, which is especially risky for species that are routinely persecuted. The king cobra (Ophiophagus hannah), a large venomous elapid, is subject to anthropogenic pressures, such as persecution and habitat loss. Here we present results from a study using radio telemetry to quantify movements and habitat use of nine king cobras in and around a protected area in Northeast Thailand. This study is the first investigation into the movements and habitat use of king cobras outside of the Western Ghats, India. On average, the tracked king cobra’s use areas of 493.42 ± 335.60 ha (95% fixed kernel), moving 183.24 ± 82.63 m per day. King cobras did not remain in intact forested area. Five of the individuals frequently used the human-dominated agricultural areas surrounding the protected area, appearing to make regular use of irrigation canals. Two adult males showed increases in movements during the breeding season. One male’s increased breeding season range caused him to venture beyond the protected area, shifting his habitat use from intact forests to scrub in human-dominated areas. King cobras’ large home range and willingness to use anthropogenic landscapes merits special consideration from conservation planners.


2010 ◽  
Vol 34 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Scott L. Goodrick ◽  
Dan Shea ◽  
John Blake

Abstract Recent changes in air quality regulations present a potential obstacle to continued use of prescribed fire as a land management tool. Lowering of the acceptable daily concentration of particulate matter from 65 to 35 μg/m3 will bring much closer scrutiny of prescribed burning practices from the air quality community. To work within this narrow window, land managers need simple tools to allow them to estimate their potential emissions and examine trade-offs between continued use of prescribed fire and other means of fuels management. A critical part of the emissions estimation process is determining the amount of fuel consumed during the burn. This study combines results from a number of studies along the Upper Coastal Plain of South Carolina to arrive at a simple means of estimating total fuel consumption on prescribed fires. The result is a simple linear relationship that determines the total fuel consumed as a function of the product of the preburn fuel load and the burning index of the National Fire Danger Rating System.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Alexandra B. Bentz ◽  
Douglas B. Rusch ◽  
Aaron Buechlein ◽  
Kimberly A. Rosvall

Abstract Background The brain plays a critical role in upstream regulation of processes central to mating effort, parental effort, and self-maintenance. For seasonally breeding animals, the brain is likely mediating trade-offs among these processes within a short breeding season, yet research thus far has only explored neurogenomic changes from non-breeding to breeding states or select pathways (e.g., steroids) in male and/or lab-reared animals. Here, we use RNA-seq to explore neural plasticity in three behaviorally relevant neural tissues (ventromedial telencephalon [VmT], hypothalamus [HYPO], and hindbrain [HB]), comparing free-living female tree swallows (Tachycineta bicolor) as they shift from territory establishment to incubation. We additionally highlight changes in aggression-related genes to explore the potential for a neurogenomic shift in the mechanisms regulating aggression, a critical behavior both in establishing and maintaining a territory and in defense of offspring. Results HB had few differentially expressed genes, but VmT and HYPO had hundreds. In particular, VmT had higher expression of genes related to neuroplasticity and processes beneficial for competition during territory establishment, but down-regulated immune processes. HYPO showed signs of high neuroplasticity during incubation, and a decreased potential for glucocorticoid signaling. Expression of aggression-related genes also shifted from steroidal to non-steroidal pathways across the breeding season. Conclusions These patterns suggest trade-offs between enhanced activity and immunity in the VmT and between stress responsiveness and parental care in the HYPO, along with a potential shift in the mechanisms regulating aggression. Collectively, these data highlight important gene regulatory pathways that may underlie behavioral plasticity in females.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel T. Buxton ◽  
Stephanie Avery-Gomm ◽  
Hsein-Yung Lin ◽  
Paul A. Smith ◽  
Steven J. Cooke ◽  
...  

Abstract Funds to combat biodiversity loss are insufficient, requiring conservation managers to make trade-offs between costs for actions to avoid further loss and costs for research and monitoring to guide effective actions. Using species’ management plans for 2328 listed species from three countries we show that 50% of species’ proposed recovery plan budgets are allocated to research and monitoring. The proportion of budgets allocated to research and monitoring vary among jurisdictions and taxa, but overall, species with higher proportions of budgets allocated to research and monitoring have poorer recovery outcomes. The proportion allocated to research and monitoring is lower for more recent recovery plans, but for some species, plans have allocated the majority of funds to information gathering for decades. We provide recommendations for careful examination of the value of collecting new information in recovery planning to ensure that conservation programs emphasize action or research and monitoring that directly informs action.


2019 ◽  
Author(s):  
Amanda S Cicchino ◽  
Nicholas A Cairns ◽  
Grégory Bulté ◽  
Stephen C Lougheed

Abstract Trade-offs shaping behavioral variation are often influenced by the environment. We investigated the role that the environment plays in mediating trade-offs using a widespread frog with a conspicuous mating display, Pseudacris crucifer. We first demonstrated, using playback and desiccation experiments, that calling site selection involves a trade-off between sound transmission and desiccation. We then determined the influence of local environmental conditions on the intensity of the trade-off by examining range-wide behavioral and environmental data. We showed that the benefit of improved call transmission is positively influenced by vegetation density and ground cover. Behavioral data are consistent with this relationship: sites with a greater transmission benefit have increased prevalence of arboreally calling males. We also found that the prevalence of arboreal calling behavior increases with relative humidity and air temperature, suggesting an influence of these environmental variables on the desiccation cost of arboreal calling. This study provides a clear example of the role of the environment in mediating trade-off intensities and shaping critical behavioral traits. Local environment mediates the intensity of a trade-off associated with arboreal calling behavior in a treefrog. Combining observational and experimental approaches, we show that arboreal calling behavior increases the transmission of a mating call while potentially subjecting individuals to a rate of desiccation six times greater than terrestrial calling. Local environmental conditions influence both the benefit and the cost of this trade-off, subjecting different populations to varying trade-off intensities and shaping arboreal calling behavior.


Sign in / Sign up

Export Citation Format

Share Document