The influence of evolutionary history and body size on partitioning of habitat resources by mammalian herbivores in south-eastern Australia

2017 ◽  
Vol 65 (4) ◽  
pp. 226 ◽  
Author(s):  
Naomi E. Davis ◽  
Ian R. Gordon ◽  
Graeme Coulson

Habitat use is the most common dimension along which sympatric species partition resources to reduce competition. We conducted faecal pellet counts at Wilsons Promontory National Park, Victoria, to examine habitat use by an assemblage of mammalian herbivores with disparate evolutionary histories and varying body size: introduced European rabbit (Oryctolagus cuniculus) and hog deer (Axis porcinus), and native eastern grey kangaroo (Macropus giganteus), swamp wallaby (Wallabia bicolor) and common wombat (Vombatus ursinus). Overlap in habitat use was low between four pairs of species, suggesting spatial partitioning of resources to reduce the potential for interspecific competition. More generally, however, overlap in habitat use was high, particularly between native and introduced grazers. These results indicate the potential for competition if resources were limiting and suggest that assemblages of species with independent evolutionary histories have inherently less resource partitioning to facilitate coexistence than assemblages of species with common evolutionary histories. Despite evidence of high overlap in habitat use between native and introduced species at a broad scale, and variation in the competitive ability of species, coexistence was likely facilitated by niche complementarity, including temporal and fine-scale partitioning of spatial resources. There was no relationship between body size and the diversity of habitats used. In contemporary assemblages of native and introduced species, evolutionary history is likely to have a strong influence on resource partitioning.


2016 ◽  
Vol 38 (1) ◽  
pp. 105 ◽  
Author(s):  
Naomi E. Davis ◽  
Graeme Coulson

The accuracy of population abundance estimates of mammalian herbivores from faecal pellet counts is potentially affected by pellet decay. We collected fresh pellet groups from hog deer (Axis porcinus), European rabbit (Oryctolagus cuniculus), eastern grey kangaroo (Macropus giganteus), swamp wallaby (Wallabia bicolor) and common wombat (Vombatus ursinus) (n = 300 per species) at Wilsons Promontory National Park, Victoria, Australia. We deposited five pellet groups per species per month within each of five vegetation types in the park, then monitored pellet group decay over 24 months. We demonstrate that age estimation of pellet groups was inaccurate and is unlikely to improve the efficiency of pellet counts. We present habitat- and species-specific estimates of pellet and pellet group decay using two measures: decay rate (the proportion of pellets surviving per unit of time); and mean time to decay. We explain how our data can be used to optimise faecal pellet count design, and to improve the accuracy of both indices and estimates of abundance from pellet counts. The variability observed in the decay of pellet groups among vegetation types, and for species among seasons, suggests that caution should be used if applying pellet decay rates over long time-frames or to locations with differing environmental conditions.



2016 ◽  
Vol 64 (2) ◽  
pp. 91 ◽  
Author(s):  
S. Garnick ◽  
J. Di Stefano ◽  
M. A. Elgar ◽  
G. Coulson

Many theories attempt to explain patterns of community organisation among large herbivores. We explored the role of body size, diet type and residence time on habitat use in a community comprising four metatherians (western grey kangaroo, Macropus fuliginosus; eastern grey kangaroo, M. giganteus; red-necked wallaby, Notamacropus rufogriseus; swamp wallaby, Wallabia bicolor) and two eutherians (red deer, Cervus elaphus; European rabbit, Oryctolagus cuniculus) in south-eastern Australia. We used camera traps to estimate habitat occupancy, quantified habitat specialisation using relative entropy, and ran regressions using percentage grass consumed, log(mass) and log(time at site) as predictor variables and relative entropy as the response. If body size influenced habitat use, we predicted smaller species would occupy fewer habitats. If diet type influenced habitat use, we predicted intermediate feeders would use more habitats. If the time that a species had been present at a site predicted community organisation, newer species would use more habitats. None of these theories explained habitat use in our community. Red deer used a narrower range of habitats than expected, perhaps due to the poor suitability of habitats available in the Grampians. While interactions between our hypotheses are likely to be important, the body size model deserves further attention in this community.



<em>Abstract.</em>—Grenadiers are the most dominant fish species of the demersal fish community in the waters off northeastern Taiwan. Due to their relative large size and high abundance, they are major predators in the local demersal community. Three congeneric species of grenadiers, <em>Coelorinchus kishinouyei</em>, <em>C. leptorhinus </em>and <em>C. multispinulosus </em>were collected by bottom trawler at depths of 100–600 m in the study area. The diets and depth distributions of these fishes were analyzed to investigate: 1) whether resource partitioning exists among these three congeneric grenadier species by water depths or feeding habits; and 2) whether ontogenetic shifts in diet or distribution depth exist for grenadiers with different developmental stages. Results showed that <em>C. multispinulosus </em>mainly occupied depths of 100–200 m, <em>C. kishinouyei </em>200–400 m and <em>C. leptorhinus </em>400–600 m. Two grenadier species pairs coexisted at some depths, <em>C. kishinouyei </em>and <em>C. multispinulosus </em>at 200 m, and <em>C. kishinouyei </em>and <em>C. leptorhinus </em>at 400 m. Diet analyses of these pairs reveal apparent resource partitioning resulting from interspecies competitions. When species coexistence occurred, the numerically dominant species would retain its preferred diet while the less abundant species made adjustments on its food habits. The distribution of body size for <em>C. leptorhinus </em>suggested separation into two size groups. The smaller size-group (4–9 cm PAL) was feeding mainly copepoda and polychaeta while the larger size-group (10–15 cm PAL) on shrimp and polychaeta, suggesting an ontogenetic diet shift. The previously described “bigger-deeper” phenomenon was not supported because of inconsistent patterns observed between body size and distributional depths of the three grenadier species studied.



2016 ◽  
Vol 43 (5) ◽  
pp. 438 ◽  
Author(s):  
Naomi E. Davis ◽  
Julian Di Stefano ◽  
Graeme Coulson ◽  
Jim Whelan ◽  
John Wright

Context Restoration of disturbed vegetation communities commonly involves altering vegetation composition and structure, attributes that can influence the suitability of habitat for fauna. Feedbacks may occur whereby changes to the vegetation affect mammalian herbivores, and unintended changes may prevent managers from achieving conservation goals. Aims To understand how vegetation management affects habitat use by five mammalian herbivores, namely eastern grey kangaroo (Macropus giganteus), swamp wallaby (Wallabia bicolor), common wombat (Vombatus ursinus), European rabbit (Oryctolagus cuniculus) and hog deer (Axis porcinus). Methods A management experiment (mechanical slashing of the encroaching shrub Leptospermum laevigatum) at Wilsons Promontory National Park, Australia, created slashed swales in addition to untreated dune and scrub woodland. In each vegetation stratum, we estimated the cover of L. laevigatum and quantified herbivore abundance by counting the standing crop of faecal pellets. Key results Relative to untreated vegetation, mechanical slashing of L. laevigatum substantially reduced cover of this species above 200 cm, but increased its cover below 30 cm. On the basis of faecal-pellet counts, multispecies use of managed and unmanaged parts of the landscape differed substantially, with the differences principally driven by higher abundance of European rabbits and eastern grey kangaroos at slashed sites. Conclusions The responses of three grazing species (kangaroo, rabbits and wombats) to vegetation management were predicted well by prior knowledge of diet and habitat preferences. This was not the case for the browser (swamp wallaby), nor for the grazer that consumes substantial amounts of browse in the study area (hog deer), and additional knowledge of the processes underlying their responses to vegetation change is required. Implications Our findings highlighted that vegetation management can influence herbivore abundances in the managed system. An improved understanding of these associations will allow vegetation management plans to incorporate herbivore responses.



Gaia Scientia ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 86-95 ◽  
Author(s):  
Adna Ferreira da Silva Garcia ◽  
Ana Lúcia Vendel

The current work investigates dietary overlap and food partitioning among nine abundant carnivorous fishes caught in the shallow waters of the Paraíba do Norte river estuary, Paraíba State, Brazil. Fishes were sampled with a beach seine net between January and December 2008 and a total of 958 specimens had their stomach content analyzed. Crustacea was the dominant food resource for Lutjanus alexandrei, L. jocu and Bathygobius soporator, whereas Telostei were consumed mainly by Centropomus undecimalis and C. parallelus. In contrast, Polychaeta were preyed upon mainly by Diapterus rhombeus, Eucinostomus argenteus, Sciades herzbergii and S. parkeri. Although most species consumed similar food items, they did that in varying proportions and amounts. Overall, the niche overlap among species was low (< 0.60), but there were several cases where pair of species had their feeding niche highly overlapped (between 0.72 and 0.97). These findings corroborate the hypothesis that food resource partitioning determines species coexistence in estuarine tropical environments.



Ecology ◽  
1981 ◽  
Vol 62 (5) ◽  
pp. 1370-1386 ◽  
Author(s):  
Gary G. Mittelbach


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.



Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 667-673 ◽  
Author(s):  
W Jason Kennington ◽  
Julia Gockel ◽  
Linda Partridge

AbstractAsymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations.



2021 ◽  
Vol 19 (3) ◽  
Author(s):  
Alessandra Pasian Lonardoni ◽  
Cristhiana Paula Röpke ◽  
Taís Melo ◽  
Gislene Torrente-Vilara

Abstract Phylogenetic proximity suggests some degree of diet similarity among species. Usually, studies of diet show that species coexistence is allowed by partitioning food resources. We evaluate how visually oriented piscivorous fishes (Characiformes) share prey before and after building the Santo Antônio Hydroelectric Power Plant (HPP) in the Madeira River (Brazil), the largest muddy-water tributary of the Amazon River. Piscivorous species (Acestrorhynchus falcirostris, Acestrorhynchus heterolepis, Hydrolycus scomberoides, and Rhaphiodon vulpinus) were sampled under pristine (pre-HPP) and disturbed (post-HPP) environmental conditions. We analyzed species abundance and stomach contents for stomach fullness and prey composition to check variations between congeneric and non-congeneric species. The percent volume of prey taxa was normalized by stomach fullness and grouped into the taxonomic family level to determine diet, niche breadth, and overlap. Only R. vulpinus abundance increased in post-HPP. There was no significant variation in niche breadth between the periods, while niche overlap decreased in congeneric and non-congeneric species. Our results indicate that river impoundment affected piscivorous fishes in distinct ways and modified their resource partitioning. Therefore, evaluate interspecific interactions is a required tool to understand how fishes respond to river damming.



2016 ◽  
Vol 46 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Nathália Carina dos Santos SILVA ◽  
Aluízio José Lopes da COSTA ◽  
José LOUVISE ◽  
Bruno Eleres SOARES ◽  
Vanessa Cristine e Souza REIS ◽  
...  

ABSTRACTResource partitioning is important for species coexistence. Species with similar ecomorphology are potential competitors, especially when phylogenetically close, due to niche conservatism. The aim of this study was to investigate the resource partitioning among populations of two species of lebiasinids (Copella nigrofasciata and Pyrrhulina aff. brevis) that co-occur in a first-order Amazonian stream, analyzing the trophic ecology, feeding strategies and ecomorphological attributes related to the use of food and space by these species. Fish were captured in May and September 2010. The stomach contents of 60 individuals were analyzed and quantified volumetrically to characterize the feeding ecology of both species. Eleven morphological attributes were measured in 20 specimens and combined in nine ecomorphological indices. Both species had an omnivorous-invertivorous diet and consumed predominantly allochthonous items. Both showed a tendency to a generalist diet, but intrapopulational variation in resource use was also detected. Overall feeding niche overlap was high, but differed between seasons: low during the rainy season and high in the dry season. In the latter, the food niche overlap was asymmetric because C. nigrofasciata consumed several prey of P. aff. brevis, which reduced its food spectrum. The ecomorphological analysis suggests that C. nigrofasciatahas greater swimming capacity (greater relative length of caudal peduncle) than P. aff. brevis, which has greater maneuverability and tendency to inhabit lentic environments (greater relative depth of the body). Our results demonstrate that these species have similar trophic ecology and suggest a spatial segregation, given by morphological differences related to locomotion and occupation of habitat, favoring their coexistence.



Sign in / Sign up

Export Citation Format

Share Document