scholarly journals On the mechanical behavior of WS2 nanotubes under axial tension and compression

2006 ◽  
Vol 103 (3) ◽  
pp. 523-528 ◽  
Author(s):  
I. Kaplan-Ashiri ◽  
S. R. Cohen ◽  
K. Gartsman ◽  
V. Ivanovskaya ◽  
T. Heine ◽  
...  
2018 ◽  
Vol 84 (12) ◽  
pp. 61-67
Author(s):  
V. A. Eryshev

The mechanical properties of a complex composite material formed by steel and hardened concrete, are studied. A technique of operative quality control of new credible concrete and reinforcement, both in laboratory and field conditions is developed for determination of the strength and strain characteristics of materials, as well as cohesion forces determining their joint operation under load. The design of the mobile unit is presented. The unit provides a possibility of changing the direction of loading and testing the reinforced element of the given shape both for tension and compression. Moreover, the nomenclature of testing equipment and the number of molds for manufacturing concrete samples substantially decrease. Using the values of forcing resulting in concrete cracking when the joint work of concrete and reinforcement is disrupted the values of the inherent stresses and strains attributed to the concrete shrinkage are determined. An analytical relationship between the forces and deformations of the reinforced concrete sample with central reinforcement is derived for axial tension and compression, with allowance for strains and stresses in the reinforcement and concrete resulted from concrete shrinkage. The results of experimental studies are presented, including tension diagrams and diagrams of developing axial deformations with an increase in the load under the central loading of the reinforced elements. A methodology of accounting for stresses and deformations resulted from concrete shrinkage is developed. The applicability of the derived analytical relationships between stresses and deformations on the material diagrams to calculations of the reinforced concrete structures in the framework of the deformation model is estimated.


Author(s):  
Alexander Klumpp ◽  
Alexander Kauffmann ◽  
Sascha Seils ◽  
Stefan Dietrich ◽  
Volker Schulze

AbstractIn this study, the influence of cold rotary swaging on microstructure and mechanical properties of the precipitation-strengthened nickel-based superalloy 718 (Alloy 718) was investigated. The initial stages of work-hardening were characterized by means of microhardness, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) analyses. Furthermore, attention was devoted to the mechanical behavior at ambient and elevated temperature (550 °C) in uniaxial tension and compression. Rotary swaging to different true strains of maximum $$\varphi = 0.91$$ φ = 0.91 caused a moderate increase of microhardness and enhanced markedly the load-bearing capacity in tension, giving rise to yield strength beyond 2000 MPa. The mechanical strength $$R_{p0.2}$$ R p 0.2 in tension subsequent to rotary swaging perfectly correlates with increasing dislocation density $$\rho $$ ρ estimated from XRD in the form of a Taylor-like relationship $$R_{p0.2} \propto \sqrt{\rho }$$ R p 0.2 ∝ ρ . In compression, transient stress–strain evolution without the occurrence of a clear elastic range and distinct yield phenomenon was observed. Restoration of the elastic range, accompanied by a pronounced increase of microhardness, was obtained by a post-swaging tempering treatment at 600 °C.


Author(s):  
M. T. Ahmadian ◽  
T. Pirbodaghi ◽  
M. Pak

In this study, the free vibration of laminated composite plates with and without stiffeners subjected to axial loads is carried out using finite element method. The plates are stiffened by laminated composite strip and Timoshenko beam. The plates and the strips are modeled with rectangular 9 noded isoparametric quadratic elements with three degrees of freedom per node and the Timoshenko beam is modeled with linear 2 noded isoparametric quadratic elements with 2 degrees of freedom per node. The effects of both shear deformation and rotary inertia are implemented in the modeling of plate and stiffener. The governing differential equations are obtained in terms of the mid-plane displacement components and shear rotations using Hamilton’s principle. The effects of axial tension and compression loads and stiffeners on the natural frequencies of the plate are investigated. Results indicate the tension loads and stiffeners will increase the natural frequencies while the compression loads reduce the natural frequencies. The buckling force of plate is computed by increasing the absolute value of compressive force until the first natural frequency tends to zero. Results of simple cases are compared with finding in the literature and a good agreement was achieved.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14353-14359
Author(s):  
Yudi Rosandi ◽  
Hoang-Thien Luu ◽  
Herbert M. Urbassek ◽  
Nina Gunkelmann

Alumina coatings increase the ductility of aluminum nanowires by reorganization of the Al–O layer and stabilization of bonds.


1969 ◽  
Vol 4 (2) ◽  
pp. 81-87 ◽  
Author(s):  
E K Priddle

This work describes the fracture behaviour of silicon-carbide tubular specimens under multi-axial stresses at room temperature. A method of obtaining combinations of stresses in the form of torsion, hoop, axial tension, and compression is described and failure envelopes for silicon carbide are included from the data obtained. Failure theories are reviewed and the results from the work show that the available theories are inadequate to describe both the tension-tension and tension-compression quadrants. For practical purposes a straight-line relation can be used joining axial and hoop tensile strengths and the axial compression strength.


Polymers ◽  
2014 ◽  
Vol 6 (6) ◽  
pp. 1862-1876 ◽  
Author(s):  
Yunyu Li ◽  
Yanlei Wang ◽  
Jinping Ou

1973 ◽  
Vol 8 (3) ◽  
pp. 168-175 ◽  
Author(s):  
J M H Andrews ◽  
E G Ellison

There is a scarcity of multiaxial fatigue data available to designers especially in the high-strain régime. This is due in part of the complexity of the test equipment involved. A servo-hydraulic experimental rig has been developed for the application of biaxial high-strain reversed cycles to thin-walled tubular specimens, i.e. under axial tension and compression and internal and external pressure. It is capable of testing over a wide range of strain ratios and is reasonably versatile in that other information pertaining to buckling, Poisson's ratio, and criteria for yielding can be obtained.


Sign in / Sign up

Export Citation Format

Share Document