scholarly journals Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells

2009 ◽  
Vol 106 (3) ◽  
pp. 803-807 ◽  
Author(s):  
Yuki Kobayashi ◽  
Yu Kanesaki ◽  
Ayumi Tanaka ◽  
Haruko Kuroiwa ◽  
Tsuneyoshi Kuroiwa ◽  
...  

Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.



2002 ◽  
Vol 7 (6) ◽  
pp. 523-534 ◽  
Author(s):  
Hideo Nishitani ◽  
Zoi Lygerou
Keyword(s):  


1991 ◽  
Vol 100 (2) ◽  
pp. 311-317
Author(s):  
RICHARD J. CYR

Microtubules (Mts) are found in four distinct arrays appearing sequentially in a cell-cycle-dependent fashion within the cells of higher plants. Additionally, the cortical Mts of non-cycling cells are spatially altered in a variety of differentiated states. Information regarding the molecular details underlying these Mt-reorientation events in plant cells is scarce. Moreover, it is unclear how cytoskeletal behavior integrates with the myriad of other cellular activities that are altered concomitantly in both differentiating and cycling cells. Data are presented herein to indicate that calcium, in the form of a Ca2+/calmodulin complex, can alter the behavior of Mts in lysed carrot protoplasts. Mechanistically, we show that Ca2+/calmodulin most likely interacts with Mts via associations with microtubule associated pro- teins (MAPS). These results are discussed with reference to how Ca2+ may alter the dynamic behavior of Mts during growth and development.



1994 ◽  
Vol 125 (4) ◽  
pp. 705-719 ◽  
Author(s):  
S Kornbluth ◽  
M Dasso ◽  
J Newport

TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP-bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.



mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Shin-ya Miyagishima ◽  
Atsuko Era ◽  
Tomohisa Hasunuma ◽  
Mami Matsuda ◽  
Shunsuke Hirooka ◽  
...  

ABSTRACTThe transition from G1to S phase and subsequent nuclear DNA replication in the cells of many species of eukaryotic algae occur predominantly during the evening and night in the absence of photosynthesis; however, little is known about how day/night changes in energy metabolism and cell cycle progression are coordinated and about the advantage conferred by the restriction of S phase to the night. Using a synchronous culture of the unicellular red algaCyanidioschyzon merolae, we found that the levels of photosynthetic and respiratory activities peak during the morning and then decrease toward the evening and night, whereas the pathways for anaerobic consumption of pyruvate, produced by glycolysis, are upregulated during the evening and night as reported recently in the green algaChlamydomonas reinhardtii. Inhibition of photosynthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) largely reduced respiratory activity and the amplitude of the day/night rhythm of respiration, suggesting that the respiratory rhythm depends largely on photosynthetic activity. Even when the timing of G1/S-phase transition was uncoupled from the day/night rhythm by depletion of retinoblastoma-related (RBR) protein, the same patterns of photosynthesis and respiration were observed, suggesting that cell cycle progression and energy metabolism are regulated independently. Progression of the S phase under conditions of photosynthesis elevated the frequency of nuclear DNA double-strand breaks (DSB). These results suggest that the temporal separation of oxygenic energy metabolism, which causes oxidative stress, from nuclear DNA replication reduces the risk of DSB during cell proliferation inC. merolae.IMPORTANCEEukaryotes acquired chloroplasts through an endosymbiotic event in which a cyanobacterium or a unicellular eukaryotic alga was integrated into a previously nonphotosynthetic eukaryotic cell. Photosynthesis by chloroplasts enabled algae to expand their habitats and led to further evolution of land plants. However, photosynthesis causes greater oxidative stress than mitochondrion-based respiration. In seed plants, cell division is restricted to nonphotosynthetic meristematic tissues and populations of photosynthetic cells expand without cell division. Thus, seemingly, photosynthesis is spatially sequestrated from cell proliferation. In contrast, eukaryotic algae possess photosynthetic chloroplasts throughout their life cycle. Here we show that oxygenic energy conversion (daytime) and nuclear DNA replication (night time) are temporally sequestrated inC. merolae. This sequestration enables “safe” proliferation of cells and allows coexistence of chloroplasts and the eukaryotic host cell, as shown in yeast, where mitochondrial respiration and nuclear DNA replication are temporally sequestrated to reduce the mutation rate.



1979 ◽  
Vol 39 (1) ◽  
pp. 215-233
Author(s):  
KIM NASMYTH ◽  
PAUL NURSE ◽  
R. S. S. FRASER

Request for reprints to Paul Nurse. Two isotopic methods for measuring DNA replication in the fission yeast Schizosaccharomyces pombe are described. The first is a method for measuring the total quantity of [3H]uracil incorporated into DNA after pulse labelling. The second is a means of detecting DNA replication in single cells by autoradiography. Both of these techniques have been used to investigate the timing and duration of S-phase in a series of mutant strains whose cell mass at division varies over a 3-fold range. The results support the hypothesis that in S. pombe there are 2 different controls over the timing of S-phase: an attainment of a critical cell mass and a dependency upon the completion of the previous mitosis coupled with a short minimum time in G1. Strains whose cell mass at birth is above this critical level initiate DNA replication almost immediately after septation, that is, very soon after the previous mitosis. Strains whose cell mass at birth is below the critical level do not initiate replication until the critical cell mass is attained. The duration of S-phase has been estimated from the proportion of cells whose nuclei are labelled after a pulse of given duration. S-phase is short in S. pombe, lasting only about 0.1 of a cell cycle in wild type. Cell mass at S-phase does not have any consistent effect on this length. We have also investigated the degree of synchrony of S-phase initiation in daughter cells, and have found that, in a cell cycle 240 min long, their S-phases are initiated within 1–2 min of each other. This result indicates that between sisters variability in the duration of the G1 phase is small compared with variability in the total cell cycle time, and argues against the hypothesis that the rate of cell cycle traverse is determined by a random transition in G1.



Author(s):  
Supriya G. Prasanth ◽  
Juan Méndez ◽  
Kannanganattu V. Prasanth ◽  
Bruce Stillman

Replication of the human genome every time a cell divides is a highly coordinated process that ensures accurate and efficient inheritance of the genetic information. The molecular mechanism that guarantees that many origins of replication fire only once per cell–cycle has been the area of intense research. The origin recognition complex (ORC) marks the position of replication origins in the genome and serves as the landing pad for the assembly of a multiprotein, pre–replicative complex (pre–RC) at the origins, consisting of ORC, cell division cycle 6 (Cdc6), Cdc10–dependent transcript (Cdt1) and mini–chromosome maintenance (MCM) proteins. The MCM proteins serve as key participants in the mechanism that limits eukaryotic DNA replication to once–per–cell–cycle and its binding to the chromatin marks the final step of pre–RC formation, a process referred to as ‘replication licensing’. We present data demonstrating how the MCM proteins associate with the chromatin during the G1 phase, probably defining pre–RCs and then anticipate replication fork movement in a precisely coordinated manner during the S phase of the cell cycle. The process of DNA replication must also be carefully coordinated with other cell–cycle processes including mitosis and cytokinesis. Some of the proteins that control initiation of DNA replication are likely to interact with the pathways that control these important cell–cycle transitions. Herein, we discuss the participation of human ORC proteins in other vital functions, in addition to their bona fide roles in replication.



Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 640
Author(s):  
Aneta Żabka ◽  
Konrad Winnicki ◽  
Justyna Teresa Polit ◽  
Mateusz Wróblewski ◽  
Janusz Maszewski

Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Melissa Kane ◽  
Stephanie V Rebensburg ◽  
Matthew A Takata ◽  
Trinity M Zang ◽  
Masahiro Yamashita ◽  
...  

HIV-1 accesses the nuclear DNA of interphase cells via a poorly defined process involving functional interactions between the capsid protein (CA) and nucleoporins (Nups). Here, we show that HIV-1 CA can bind multiple Nups, and that both natural and manipulated variation in Nup levels impacts HIV-1 infection in a manner that is strikingly dependent on cell-type, cell-cycle, and cyclophilin A (CypA). We also show that Nups mediate the function of the antiviral protein MX2, and that MX2 can variably inhibit non-viral NLS function. Remarkably, both enhancing and inhibiting effects of cyclophilin A and MX2 on various HIV-1 CA mutants could be induced or abolished by manipulating levels of the Nup93 subcomplex, the Nup62 subcomplex, NUP88, NUP214, RANBP2, or NUP153. Our findings suggest that several Nup-dependent ‘pathways’ are variably exploited by HIV-1 to target host DNA in a cell-type, cell-cycle, CypA and CA-sequence dependent manner, and are differentially inhibited by MX2.



Sign in / Sign up

Export Citation Format

Share Document