scholarly journals Dynamics of pre-replication complex proteins during the cell division cycle

Author(s):  
Supriya G. Prasanth ◽  
Juan Méndez ◽  
Kannanganattu V. Prasanth ◽  
Bruce Stillman

Replication of the human genome every time a cell divides is a highly coordinated process that ensures accurate and efficient inheritance of the genetic information. The molecular mechanism that guarantees that many origins of replication fire only once per cell–cycle has been the area of intense research. The origin recognition complex (ORC) marks the position of replication origins in the genome and serves as the landing pad for the assembly of a multiprotein, pre–replicative complex (pre–RC) at the origins, consisting of ORC, cell division cycle 6 (Cdc6), Cdc10–dependent transcript (Cdt1) and mini–chromosome maintenance (MCM) proteins. The MCM proteins serve as key participants in the mechanism that limits eukaryotic DNA replication to once–per–cell–cycle and its binding to the chromatin marks the final step of pre–RC formation, a process referred to as ‘replication licensing’. We present data demonstrating how the MCM proteins associate with the chromatin during the G1 phase, probably defining pre–RCs and then anticipate replication fork movement in a precisely coordinated manner during the S phase of the cell cycle. The process of DNA replication must also be carefully coordinated with other cell–cycle processes including mitosis and cytokinesis. Some of the proteins that control initiation of DNA replication are likely to interact with the pathways that control these important cell–cycle transitions. Herein, we discuss the participation of human ORC proteins in other vital functions, in addition to their bona fide roles in replication.

Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


1996 ◽  
Vol 109 (2) ◽  
pp. 319-326 ◽  
Author(s):  
N. Okishio ◽  
Y. Adachi ◽  
M. Yanagida

The nda1+ and nda4+ genes of the fission yeast Schizosaccharomyces pombe encode proteins similar to budding yeast MCM2 and MCM5/CDC46, respectively, which are required for the early stages of DNA replication. The budding yeast Mcm proteins display cell-cycle dependent localization. They are present in the nucleus specifically from late M phase until the beginning of S phase, so that they were suggested to be components of a replication licensing factor, a positive factor for the onset of replication, which is thought to be inactivated after use, thus restricting replication to only once in a cell cycle. In the present study, we raised antibodies against Nda1 or Nda4 and identified 115 kDa and 80 kDa proteins, respectively. Their immunolocalization was examined in wild-type cells and in various cell-cycle mutants. Both Nda1 and Nda4 proteins remained primarily in the nucleus throughout the cell cycle. In mutants arrested in G1, S, and G2 phases, these proteins were also enriched in the nucleus. These results indicate that the dramatic change in subcellular localization as seen in budding yeast is not essential in fission yeast for the functions of Nda1 and Nda4 proteins to be executed. The histidine-tagged nda1+ gene was constructed and integrated into the chromosome to replace the wild-type nda1+ gene. The resulting His-tagged Nda1 protein was adsorbed to the Ni-affinity column, and co-eluted with the untagged Nda4 protein, suggesting that they formed a complex.


2012 ◽  
Vol 11 (10) ◽  
pp. 1180-1190 ◽  
Author(s):  
Ziyin Li

ABSTRACT The cell division cycle is tightly regulated by the activation and inactivation of a series of proteins that control the replication and segregation of organelles to the daughter cells. During the past decade, we have witnessed significant advances in our understanding of the cell cycle in Trypanosoma brucei and how the cycle is regulated by various regulatory proteins. However, many other regulators, especially those unique to trypanosomes, remain to be identified, and we are just beginning to delineate the signaling pathways that drive the transitions through different cell cycle stages, such as the G 1 /S transition, G 2 /M transition, and mitosis-cytokinesis transition. Trypanosomes appear to employ both evolutionarily conserved and trypanosome-specific molecules to regulate the various stages of its cell cycle, including DNA replication initiation, spindle assembly, chromosome segregation, and cytokinesis initiation and completion. Strikingly, trypanosomes lack some crucial regulators that are well conserved across evolution, such as Cdc6 and Cdt1, which are involved in DNA replication licensing, the spindle motor kinesin-5, which is required for spindle assembly, the central spindlin complex, which has been implicated in cytokinesis initiation, and the actomyosin contractile ring, which is located at the cleavage furrow. Conversely, trypanosomes possess certain regulators, such as cyclins, cyclin-dependent kinases, and mitotic centromere-associated kinesins, that are greatly expanded and likely play diverse cellular functions. Overall, trypanosomes apparently have integrated unique regulators into the evolutionarily conserved pathways to compensate for the absence of those conserved molecules and, additionally, have evolved certain cell cycle regulatory pathways that are either different from its human host or distinct between its own life cycle forms.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hsiang-Chen Chou ◽  
Kuhulika Bhalla ◽  
Osama EL Demerdesh ◽  
Olaf Klingbeil ◽  
Kaarina Hanington ◽  
...  

The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.


2019 ◽  
Vol 218 (12) ◽  
pp. 3892-3902 ◽  
Author(s):  
Bennie Lemmens ◽  
Arne Lindqvist

The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.


2015 ◽  
Vol 35 (23) ◽  
pp. 4043-4052 ◽  
Author(s):  
Junyue Xing ◽  
Jie Yi ◽  
Xiaoyu Cai ◽  
Hao Tang ◽  
Zhenyun Liu ◽  
...  

The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without alteringCDK1mRNA levels. Further studies revealed that NSun2 methylatedCDK1mRNAin vitroand in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle.


2018 ◽  
Author(s):  
Yizhuo Zhou ◽  
Pedro N. Pozo ◽  
Seeun Oh ◽  
Haley M. Stone ◽  
Jeanette Gowen Cook

AbstractAchieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 hyperphosphorylates Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, we provide evidence that protein phosphatase 1-dependent Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.Author SummaryThe initial step of DNA replication is loading the DNA helicase, MCM, onto DNA during the first phase of the cell division cycle. If MCM loading occurs inappropriately onto DNA that has already been replicated, then cells risk DNA re-replication, a source of endogenous DNA damage and genome instability. How mammalian cells prevent any sections of their very large genomes from re-replicating is still not fully understood. We found that the Cdt1 protein, one of the critical MCM loading factors, is inhibited specifically in late cell cycle stages through a mechanism involving protein phosphorylation. This phosphorylation prevents Cdt1 from binding MCM; when Cdt1 can’t be phosphorylated MCM is inappropriately re-loaded onto DNA and cells are prone to re-replication. When cells divide and transition into G1 phase, Cdt1 is then dephosphorylated to re-activate it for MCM loading. Based on these findings we assert that the different mechanisms that cooperate to avoid re-replication are not redundant, but rather distinct mechanisms are dominant in different cell cycle phases. These findings have implications for understanding how genomes are duplicated precisely once per cell cycle and shed light on how that process is perturbed by changes in Cdt1 levels or phosphorylation activity.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 331 ◽  
Author(s):  
Li ◽  
Xu

The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2–7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2–7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8–MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.


2020 ◽  
Author(s):  
Hsiang-Chen Chou ◽  
Kuhulika Bhalla ◽  
Osama El Demerdesh ◽  
Olaf Klingbeil ◽  
Kaarina Hanington ◽  
...  

AbstractThe Origin Recognition Complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre- RC complexes at origins of DNA replication. Here we report tiling-sgRNA CRISPR screens that show that each subunit of ORC and CDC6 are essential in human cells. Using an auxin-inducible degradation system, stable cell lines were created that ablate ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defect in the absence of ORC2 was cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2 deficient cells were also large, with decompacted heterochromatin. Some ORC2 deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


Sign in / Sign up

Export Citation Format

Share Document