scholarly journals Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability

2011 ◽  
Vol 108 (29) ◽  
pp. E314-E322 ◽  
Author(s):  
G. Iotti ◽  
E. Longobardi ◽  
S. Masella ◽  
L. Dardaei ◽  
F. De Santis ◽  
...  
2018 ◽  
Vol 62 (11-12) ◽  
pp. 819-825 ◽  
Author(s):  
Divya Purushothaman ◽  
Francesco Blasi

Prep1 (pKnox1) is a homeodomain transcription factor of the TALE superclass whose members can act as co-factors of Hox. Prep1 is essential for embryogenesis, but in the adult it also acts as a tumor suppressor. We describe and analyze here the available mutant mice, their phenotypes and a few discordant cases. Moreover we specify the basic rules underlying the binding of Prep1 and its TALE partners to DNA, and their plasticity during embryonic development. We finally review recent data on Prep1 which indicate a very basic cellular function at the level of DNA replication and DNA damage.


Blood ◽  
2015 ◽  
Vol 125 (5) ◽  
pp. 803-814 ◽  
Author(s):  
Jacob T. Jackson ◽  
Chayanica Nasa ◽  
Wei Shi ◽  
Nicholas D. Huntington ◽  
Clifford W. Bogue ◽  
...  

Key Points Hhex regulates development of diverse lymphoid lineages. Hhex regulates cycling of lymphoid precursors.


2006 ◽  
Vol 281 (50) ◽  
pp. 38385-38395 ◽  
Author(s):  
Therese B. Deramaudt ◽  
Mira M. Sachdeva ◽  
Melanie P. Wescott ◽  
Yuting Chen ◽  
Doris A. Stoffers ◽  
...  

2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


Bone ◽  
2012 ◽  
Vol 50 ◽  
pp. S61 ◽  
Author(s):  
H. Taipaleenmaki⁎ ◽  
M. Van der Deen ◽  
Y. Zhang ◽  
J.B. Lian ◽  
J.L. Stein ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Hamm ◽  
Pierre Sohier ◽  
Valérie Petit ◽  
Jérémy H. Raymond ◽  
Véronique Delmas ◽  
...  

AbstractWhile the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600EPtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


FEBS Letters ◽  
1999 ◽  
Vol 461 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Tilo Moede ◽  
Barbara Leibiger ◽  
Hamedeh Ghanaat Pour ◽  
Per-Olof Berggren ◽  
Ingo B Leibiger

Sign in / Sign up

Export Citation Format

Share Document