scholarly journals Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis

2015 ◽  
Vol 112 (10) ◽  
pp. 3086-3091 ◽  
Author(s):  
Rachel Bleich ◽  
Jeramie D. Watrous ◽  
Pieter C. Dorrestein ◽  
Albert A. Bowers ◽  
Elizabeth A. Shank

Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called “secondary” metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin’s antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects—acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

2019 ◽  
Author(s):  
Wenfa Ng

Actinobacteria and streptomyces are known to produce a variety of natural products, some of which confer antibiotic or immunosuppressive activities. While it is understandable that microbes develop the ability to synthesize molecules such as antibiotics that attack other competing microbes, but why would a secondary metabolite (natural product) synthesized by a microbe confer immunosuppressive activities? Was the capability to synthesize such a molecule endowed by evolution in the context of enabling microbes to develop resistance to immune cells of the human body? Or did the capability come from the need to colonize human body surfaces or gut to gain a survival niche for the microbe? Given that actinobacteria and streptomyces are soil microbes not usually associated with human body surfaces, could their biosynthetic capability for particular immunosuppressants arise from horizontal gene transfer from bacteria that colonize human body surfaces and subsequently develop the ability to synthesize the pertinent compounds through evolution? An alternate line of thinking on this issue touches on the possibility that microbes could encounter analogs of immuno-active molecules in their natural environment. Such molecules might elicit undesired physiological effects on the microbes, which place a selection pressure on microbes to develop countermeasures to the immuno-active molecules through mutations. Hence, through evolution, microbes could have developed the capability to synthesize secondary metabolites able to bind analogs of immuno-active molecules and help sequester them or quench their bioactivity. Subsequent profiling of such secondary metabolites in drug discovery efforts could have uncovered compounds with immunosuppressant activity which are originally developed for counteracting analogs of immuno-active molecules in the environment. It has to be recognized that analogs of immuno-active compounds remain somewhat dissimilar to immune compounds secreted by human immune cells, but they likely share common motifs for protein-secondary metabolite interactions. Direct evidence of the evolution of natural products with immunosuppressant activities could only be obtained from challenging suitable bacterial species with immuno-active molecules. Long cultivation experiments with multiple generations may result in the evolution of biosynthetic gene clusters for the synthesis of natural products able to sequester or quench immuno-active molecules. But, on the another hand, understanding relative binding affinities between a library of natural products and immuno-active molecules from humans would suggest drug candidates and their biosynthetic gene clusters. Subsequent phylogenetic analysis of cluster genes with their homologs from other species may yield insights into the evolution of genes and their putative function.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Paul F. Zierep ◽  
Adriana T. Ceci ◽  
Ilia Dobrusin ◽  
Sinclair C. Rockwell-Kollmann ◽  
Stefan Günther

Microorganisms produce secondary metabolites with a remarkable range of bioactive properties. The constantly increasing amount of published genomic data provides the opportunity for efficient identification of biosynthetic gene clusters by genome mining. On the other hand, for many natural products with resolved structures, the encoding biosynthetic gene clusters have not been identified yet. Of those secondary metabolites, the scaffolds of nonribosomal peptides and polyketides (type I modular) can be predicted due to their building block-like assembly. SeMPI v2 provides a comprehensive prediction pipeline, which includes the screening of the scaffold in publicly available natural compound databases. The screening algorithm was designed to detect homologous structures even for partial, incomplete clusters. The pipeline allows linking of gene clusters to known natural products and therefore also provides a metric to estimate the novelty of the cluster if a matching scaffold cannot be found. Whereas currently available tools attempt to provide comprehensive information about a wide range of gene clusters, SeMPI v2 aims to focus on precise predictions. Therefore, the cluster detection algorithm, including building block generation and domain substrate prediction, was thoroughly refined and benchmarked, to provide high-quality scaffold predictions. In a benchmark based on 559 gene clusters, SeMPI v2 achieved comparable or better results than antiSMASH v5. Additionally, the SeMPI v2 web server provides features that can help to further investigate a submitted gene cluster, such as the incorporation of a genome browser, and the possibility to modify a predicted scaffold in a workbench before the database screening.


mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Heiko T. Kiesewalter ◽  
Carlos N. Lozano-Andrade ◽  
Mario Wibowo ◽  
Mikael L. Strube ◽  
Gergely Maróti ◽  
...  

ABSTRACT Bacillus subtilis produces a wide range of secondary metabolites providing diverse plant growth-promoting and biocontrol abilities. These secondary metabolites include nonribosomal peptides with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates, and therefore, a comparative overview of secondary metabolites from various environmental B. subtilis strains is missing. In this study, we isolated 23 B. subtilis strains from 11 sampling sites, compared the fungal inhibition profiles of wild types and their nonribosomal peptide mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that nonribosomal peptide production varied among B. subtilis strains coisolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium spp., a combination of plipastatin and surfactin is required to hinder growth of Botrytis cinerea. Detailed genomic analysis revealed that altered nonribosomal peptide production profiles in specific isolates are due to missing core genes, nonsense mutation, or potentially altered gene regulation. Our study combines microbiological antagonism assays with chemical nonribosomal peptide detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis. IMPORTANCE Secondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which nonribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate the prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack the production of certain secondary metabolites.


2019 ◽  
Author(s):  
Wenfa Ng

Actinobacteria and streptomyces are known to produce a variety of natural products, some of which confer antibiotic or immunosuppressive activities. While it is understandable that microbes develop the ability to synthesize molecules such as antibiotics that attack other competing microbes, but why would a secondary metabolite (natural product) synthesized by a microbe confer immunosuppressive activities? Was the capability to synthesize such a molecule endowed by evolution in the context of enabling microbes to develop resistance to immune cells of the human body? Or did the capability come from the need to colonize human body surfaces or gut to gain a survival niche for the microbe? Given that actinobacteria and streptomyces are soil microbes not usually associated with human body surfaces, could their biosynthetic capability for particular immunosuppressants arise from horizontal gene transfer from bacteria that colonize human body surfaces and subsequently develop the ability to synthesize the pertinent compounds through evolution? An alternate line of thinking on this issue touches on the possibility that microbes could encounter analogs of immuno-active molecules in their natural environment. Such molecules might elicit undesired physiological effects on the microbes, which place a selection pressure on microbes to develop countermeasures to the immuno-active molecules through mutations. Hence, through evolution, microbes could have developed the capability to synthesize secondary metabolites able to bind analogs of immuno-active molecules and help sequester them or quench their bioactivity. Subsequent profiling of such secondary metabolites in drug discovery efforts could have uncovered compounds with immunosuppressant activity which are originally developed for counteracting analogs of immuno-active molecules in the environment. It has to be recognized that analogs of immuno-active compounds remain somewhat dissimilar to immune compounds secreted by human immune cells, but they likely share common motifs for protein-secondary metabolite interactions. Direct evidence of the evolution of natural products with immunosuppressant activities could only be obtained from challenging suitable bacterial species with immuno-active molecules. Long cultivation experiments with multiple generations may result in the evolution of biosynthetic gene clusters for the synthesis of natural products able to sequester or quench immuno-active molecules. But, on the another hand, understanding relative binding affinities between a library of natural products and immuno-active molecules from humans would suggest drug candidates and their biosynthetic gene clusters. Subsequent phylogenetic analysis of cluster genes with their homologs from other species may yield insights into the evolution of genes and their putative function.


Author(s):  
Heiko T. Kiesewalter ◽  
Carlos N. Lozano-Andrade ◽  
Mario Wibowo ◽  
Mikael L. Strube ◽  
Gergely Maróti ◽  
...  

ABSTRACTBacillus subtilis produces a wide range of secondary metabolites providing diverse plant-growth-promoting and biocontrol abilities. These secondary metabolites include non-ribosomal peptides (NRPs) with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates and therefore, a comparative overview of B. subtilis secondary metabolites is missing.In this study, we have isolated 23 B. subtilis strains from eleven sampling sites, compared the fungal inhibition profiles of wild types and their NRPs mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that non-ribosomal peptide production varied among B. subtilis strains co-isolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium sp., a combination of plipastatin and surfactin is required to hinder the growth of Botrytis cinerea. Detailed genomic analysis revealed that altered NRP production profiles in certain isolates is due to missing core genes, nonsense mutation, or potentially altered gene regulation.Our study combines microbiological antagonism assays with chemical NRPs detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis.IMPORTANCESecondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which non-ribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack production of certain secondary metabolites.


2020 ◽  
Vol 8 (11) ◽  
pp. 1800
Author(s):  
Constanze Lasch ◽  
Marc Stierhof ◽  
Marta Rodríguez Estévez ◽  
Maksym Myronovskyi ◽  
Josef Zapp ◽  
...  

Since the 1950s, natural products of bacterial origin were systematically developed to be used as drugs with a wide range of medical applications. The available treatment options for many diseases are still not satisfying, wherefore, the discovery of new structures has not lost any of its importance. Beyond the great variety of already isolated and characterized metabolites, Streptomycetes still harbor uninvestigated gene clusters whose products can be accessed using heterologous expression in host organisms. This works presents the discovery of a set of structurally novel secondary metabolites, dudomycins A to D, through the expression of a cryptic NRPS cluster from Streptomyces albus ssp. Chlorinus NRRL B-24108 in the heterologous host strain Streptomyces albus Del14. A minimal set of genes, required for the production of dudomycins, was defined through gene inactivation experiments. This paper also proposes a model for dudomycin biosynthesis.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.


2020 ◽  
Author(s):  
Audam Chhun ◽  
Despoina Sousoni ◽  
Maria del Mar Aguiló-Ferretjans ◽  
Lijiang Song ◽  
Christophe Corre ◽  
...  

AbstractBacteria from the Actinomycete family are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacteria Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide A but half of its putative BGCs are still orphan. Although previous studies have looked into using marine heterotrophs to induce orphan BGCs in Salinispora, the potential impact of co-culturing marine phototrophs with Salinispora has yet to be investigated. Following the observation of clear antimicrobial phenotype of the actinobacterium on a range of phytoplanktonic organisms, we here report the discovery of novel cryptic secondary metabolites produced by S. tropica in response to its co-culture with photosynthetic primary producers. An approach combining metabolomics and proteomics revealed that the photosynthate released by phytoplankton influences the biosynthetic capacities of S. tropica with both production of new molecules and the activation of orphan BGCs. Our work pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from actinobacteria.ImportanceThe alarming increase of antimicrobial resistance has generated an enormous interest in the discovery of novel active compounds. The isolation of new microbes to untap novel natural products is currently hampered because most biosynthetic gene clusters (BGC) encoded by these microorganisms are not expressed under standard laboratory conditions, i.e. mono-cultures. Here we show that co-culturing can be an easy way for triggering silent BGC. By combining state-of-the-art metabolomics and high-throughput proteomics, we characterized the activation of cryptic metabolites and silent biosynthetic gene clusters in the marine actinobacteria Salinispora tropica by the presence of phytoplankton photosynthate. We further suggest a mechanistic understanding of the antimicrobial effect this actinobacterium has on a broad range of prokaryotic and eukaryotic phytoplankton species and reveal a promising candidate for antibiotic production.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACT Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group. IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.


Medicines ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 32 ◽  
Author(s):  
Ray Chen ◽  
Hon Wong ◽  
Brendan Burns

Microorganisms in the environment can produce a diverse range of secondary metabolites (SM), which are also known as natural products. Bioactive SMs have been crucial in the development of antibiotics and can also act as useful compounds in the biotechnology industry. These natural products are encoded by an extensive range of biosynthetic gene clusters (BGCs). The developments in omics technologies and bioinformatic tools are contributing to a paradigm shift from traditional culturing and screening methods to bioinformatic tools and genomics to uncover BGCs that were previously unknown or transcriptionally silent. Natural product discovery using bioinformatics and omics workflow in the environment has demonstrated an extensive distribution of BGCs in various environments, such as soil, aquatic ecosystems and host microbiome environments. Computational tools provide a feasible and culture-independent route to find new secondary metabolites where traditional approaches cannot. This review will highlight some of the advances in the approaches, primarily bioinformatic, in identifying new BGCs, especially in environments where microorganisms are rarely cultured. This has allowed us to tap into the huge potential of microbial dark matter.


Sign in / Sign up

Export Citation Format

Share Document