scholarly journals Intramolecular phenotypic capacitance in a modular RNA molecule

2015 ◽  
Vol 112 (40) ◽  
pp. 12444-12449 ◽  
Author(s):  
Eric J. Hayden ◽  
Devin P. Bendixsen ◽  
Andreas Wagner

Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins.

2021 ◽  
Vol 9 (7) ◽  
pp. 1408
Author(s):  
Magali Van den Kerkhof ◽  
Philippe Leprohon ◽  
Dorien Mabille ◽  
Sarah Hendrickx ◽  
Lindsay B. Tulloch ◽  
...  

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.


2002 ◽  
Vol 124 (32) ◽  
pp. 9396-9403 ◽  
Author(s):  
Patrick Amstutz ◽  
Joelle N. Pelletier ◽  
Armin Guggisberg ◽  
Lutz Jermutus ◽  
Sandro Cesaro-Tadic ◽  
...  

2017 ◽  
Vol 214 (3) ◽  
pp. 669-680 ◽  
Author(s):  
J.J. Lyons ◽  
Y. Liu ◽  
C.A. Ma ◽  
X. Yu ◽  
M.P. O’Connell ◽  
...  

Nonimmunological connective tissue phenotypes in humans are common among some congenital and acquired allergic diseases. Several of these congenital disorders have been associated with either increased TGF-β activity or impaired STAT3 activation, suggesting that these pathways might intersect and that their disruption may contribute to atopy. In this study, we show that STAT3 negatively regulates TGF-β signaling via ERBB2-interacting protein (ERBIN), a SMAD anchor for receptor activation and SMAD2/3 binding protein. Individuals with dominant-negative STAT3 mutations (STAT3mut) or a loss-of-function mutation in ERBB2IP (ERBB2IPmut) have evidence of deregulated TGF-β signaling with increased regulatory T cells and total FOXP3 expression. These naturally occurring mutations, recapitulated in vitro, impair STAT3–ERBIN–SMAD2/3 complex formation and fail to constrain nuclear pSMAD2/3 in response to TGF-β. In turn, cell-intrinsic deregulation of TGF-β signaling is associated with increased functional IL-4Rα expression on naive lymphocytes and can induce expression and activation of the IL-4/IL-4Rα/GATA3 axis in vitro. These findings link increased TGF-β pathway activation in ERBB2IPmut and STAT3mut patient lymphocytes with increased T helper type 2 cytokine expression and elevated IgE.


2001 ◽  
Vol 11 (23) ◽  
pp. 3007-3010 ◽  
Author(s):  
Karen Stolze ◽  
Stephen C Holmes ◽  
David J Earnshaw ◽  
Mohinder Singh ◽  
Dmitry Stetsenko ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3650
Author(s):  
Carolin P. M. Scheitl ◽  
Sandra Lange ◽  
Claudia Höbartner

Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalyzing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5′-adenylated RNA (5′-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3′-5′-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5′-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.


2010 ◽  
Vol 1272 ◽  
Author(s):  
Stefan Franzen ◽  
Donovan Leonard

AbstractRNA- and DNA-mediation or templating of materials has been used to synthesize nanometer scale wires, and CdS nanoparticles. However, RNA and DNA have the potential to act as catalysts, which could be valuable tools in the search for new routes to materials synthesis. RNA has the ability to catalyze splicing and cutting of other RNA molecules. Catalytic activity has been extended to more general classes of reactions for both RNA and DNA using in vitro selection methods. However, catalytic activity in materials synthesis is a more recent idea that has not yet found great application. The first example of RNA-mediated evolutionary materials synthesis is discussed with specific data examples that show incompatibility of reagents in the solvent system utilized. The hydrophobic reagent Pd2(DBA)3, used as a metal precursor, was observed to spontaneously form nanostructures composed of Pd2(DBA)3 or Pd(DBA)3 rather than palladium nanoparticles, as originally reported 1. A case study of this materials synthesis example is described including the complimentary use of multi-length scale techniques including transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning TEM (STEM), electron energy loss spectroscopy (EELS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and optical microscopy (OM). This example raises important questions regarding the extent to which non-aqueous solvents should be used in nucleic acid-mediated processes, the nature of selections in enzyme and materials development, and the requirement for chemical compatibility of the precursor molecules. The importance of good characterization tools at every stage of an in vitro selection is illustrated with concrete examples given. In order to look at the way forward for nucleic acid-mediated materials synthesis, an examination of the chemical interaction of nucleic acids with various precursors is considered. Application of density functional theory calculations provides one means to predict reactivity and compatibility. The repertoire of chemical interactions in the nucleic acids is considered vis-à-vis common metals and metal chalcogenides. The case is made for the need for water-soluble syntheses and well-controlled kinetics in order to achieve the control that is theoretically possible using nucleic-acids as a synthetic tool.


Sign in / Sign up

Export Citation Format

Share Document