scholarly journals The modular and integrative functional architecture of the human brain

2015 ◽  
Vol 112 (49) ◽  
pp. E6798-E6807 ◽  
Author(s):  
Maxwell A. Bertolero ◽  
B. T. Thomas Yeo ◽  
Mark D’Esposito

Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions.

2021 ◽  
pp. 102-106
Author(s):  
Claudia Menzel ◽  
Gyula Kovács ◽  
Gregor U. Hayn-Leichsenring ◽  
Christoph Redies

Most artists who create abstract paintings place the pictorial elements not at random, but arrange them intentionally in a specific artistic composition. This arrangement results in a pattern of image properties that differs from image versions in which the same pictorial elements are randomly shuffled. In the article under discussion, the original abstract paintings of the author’s image set were rated as more ordered and harmonious but less interesting than their shuffled counterparts. The authors tested whether the human brain distinguishes between these original and shuffled images by recording electrical brain activity in a particular paradigm that evokes a so-called visual mismatch negativity. The results revealed that the brain detects the differences between the two types of images fast and automatically. These findings are in line with models that postulate a significant role of early (low-level) perceptual processing of formal image properties in aesthetic evaluations.


1995 ◽  
Vol 18 (2) ◽  
pp. 365-366
Author(s):  
Rumyana Kristeva-Feige ◽  
Bernd Feige

AbstractPosner & Raichle's (1994) book is a fascinating and readable account of the studies the authors have conducted on the localization of cognitive functions in the brain mainly using PET and EEC evoked potential methods. Our criticism concerns the underrepresentation of some imaging techniques (magnetoencephalography) and some forms of brain activity (spontaneous activity). Furthermore, the book leaves the reader with the impression that the brain only responds to external events.


2019 ◽  
Author(s):  
Oscar Esteban ◽  
Rastko Ciric ◽  
Karolina Finc ◽  
Ross Blair ◽  
Christopher J. Markiewicz ◽  
...  

Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time-consuming, error-prone, and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure (BIDS) to standardize both the input datasets —MRI data as stored by the scanner— and the outputs —data ready for modeling and analysis—, fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow.


2018 ◽  
Author(s):  
Christopher Holdgraf ◽  
Stefan Appelhoff ◽  
Stephan Bickel ◽  
Kristofer Bouchard ◽  
Sasha D'Ambrosio ◽  
...  

Intracranial electroencephalography (iEEG) data offer a unique combination of high spatial and temporal resolution measures of the living human brain. However, data collection is limited to highly specialized clinical environments. To improve internal (re)use and external sharing of these unique data, we present a structure for storing and sharing iEEG data: BIDS-iEEG, an extension of the Brain Imaging Data Structure (BIDS) specification, along with freely available examples and a bids-starter-kit. BIDS is a framework for organizing and documenting data and metadata with the aim to make datasets more transparent and reusable and to improve reproducibility of research. It is a community-driven specification with an inclusive decision-making process. As an extension of the BIDS specification, BIDS-iEEG facilitates integration with other modalities such as fMRI, MEG, and EEG. As the BIDS-iEEG extension has received input from many iEEG researchers, it provides a common ground for data transfer within labs, between labs, and in open-data repositories. It will facilitate reproducible analyses across datasets, experiments, and recording sites, allowing scientists to answer more complex questions about the human brain. Finally, the cross-modal nature of BIDS will enable efficient consolidation of data from multiple sites for addressing questions about generalized brain function.


2022 ◽  
pp. 86-97
Author(s):  
Hitesh Marwaha ◽  
Anurag Sharma ◽  
Vikrant Sharma

Neuroscience is the study of the brain and its impact on behavior and cognitive functions. Computational neuroscience is the subfield that deals with the study of the ability of the brain to think and compute. It also analyzes various electrical and chemical signals that take place in the brain to represent and process the information. In this chapter, a special focus will be given on the processing of signals by the brain to solve the problems. In the second section of the chapter, the role of graph theory is discussed to analyze the pattern of neurons. Graph-based analysis reveals meaningful information about the topological architecture of human brain networks. The graph-based analysis also discloses the networks in which most nodes are not neighbors of each other but can be reached from every other node by a small number of steps. In the end, it is concluded that by using the various operations of graph theory, the vertex centrality, betweenness, etc. can be computed to identify the dominant neurons for solving different types of computational problems.


2017 ◽  
Author(s):  
Guiomar Niso ◽  
Krzysztof J. Gorgolewski ◽  
Elizabeth Bock ◽  
Teon L. Brooks ◽  
Guillaume Flandin ◽  
...  

AbstractWe present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG provides direct measurement of brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS has provided a solution to structure the organization of magnetic resonance imaging (MRI) data, which nature and acquisition parameters are different. Despite the lack of standard data format for MEG, MEG-BIDS is a principled solution to store, organize and share the typically-large data volumes produced. It builds on BIDS for MRI, and therefore readily yields a multimodal data organization by construction. This is particularly valuable for the anatomical and functional registration of MEG source imaging with MRI. With MEG-BIDS and a growing range of software adopting the standard, the MEG community has a solution to minimize curation overheads, reduce data handling errors and optimize usage of computational resources for analytics. The standard also includes well-defined metadata, to facilitate future data harmonization and sharing efforts.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2021 ◽  
Author(s):  
Aymen Sadaka ◽  
Ana Ozuna ◽  
Richard Ortiz ◽  
Praveen Kulkarni ◽  
Clare Johnson ◽  
...  

Abstract Background: The phytocannabinoid cannabidiol (CBD) is a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged one hr later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements.Results: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. The pattern of ARAS connectivity closely overlapped with brain areas showing high levels N-acyl-phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) messenger RNA.Conclusion: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. The putative target and mechanism of action is NAPE-PLD the enzyme responsible for the biosynthesis of lipid signaling molecules like anandamide.


Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
K.D. Walton ◽  
...  

New method for the magnetic encephalography data analysis was proposed. The method transforms multichannel time series into the spatial structure of the human brain activity. In this paper we further develop this method to determine the dominant direction of the electrical sources of brain activity at each node of the calculation grid. We have considered the experimental data, obtained with three 275-channel magnetic encephalographs in New York University, McGill University and Montreal University. The human alpha rhythm phenomenon was selected as a model object. Magnetic encephalograms of the brain spontaneous activity were registered for 5-7 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the frequency band 8-12 Hz. In order to estimate the local activity direction, at the each node of calculation grid the vector of the inverse problem solution was selected, having the maximal spectral power. So, the 3D-map of the brain activity vector field was produced – the directional functional tomogram. Such maps were generated for 15 subjects and some common patterns were revealed in the directions of the alpha rhythm elementary sources. The proposed method can be used to study the local properties of the brain activity in any spectral band and in any brain compartment.


Sign in / Sign up

Export Citation Format

Share Document