scholarly journals Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers

2015 ◽  
Vol 112 (38) ◽  
pp. E5281-E5289 ◽  
Author(s):  
Bettina Budeus ◽  
Stefanie Schweigle de Reynoso ◽  
Martina Przekopowitz ◽  
Daniel Hoffmann ◽  
Marc Seifert ◽  
...  

Our knowledge about the clonal composition and intraclonal diversity of the human memory B-cell compartment and the relationship between memory B-cell subsets is still limited, although these are central issues for our understanding of adaptive immunity. We performed a deep sequencing analysis of rearranged immunoglobulin (Ig) heavy chain genes from biological replicates, covering more than 100,000 memory B lymphocytes from two healthy adults. We reveal a highly similar B-cell receptor repertoire among the four main human IgM+ and IgG+ memory B-cell subsets. Strikingly, in both donors, 45% of sequences could be assigned to expanded clones, demonstrating that the human memory B-cell compartment is characterized by many, often very large, B-cell clones. Twenty percent of the clones consisted of class switched and IgM+(IgD+) members, a feature that correlated significantly with clone size. Hence, we provide strong evidence that the vast majority of Ig mutated B cells—including IgM+IgD+CD27+ B cells—are post-germinal center (GC) memory B cells. Clone members showed high intraclonal sequence diversity and high intraclonal versatility in Ig class and IgG subclass composition, with particular patterns of memory B-cell clone generation in GC reactions. In conclusion, GC produce amazingly large, complex, and diverse memory B-cell clones, equipping the human immune system with a versatile and highly diverse compartment of IgM+(IgD+) and class-switched memory B cells.

Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2150-2158 ◽  
Author(s):  
Magdalena A. Berkowska ◽  
Gertjan J. A. Driessen ◽  
Vasilis Bikos ◽  
Christina Grosserichter-Wagener ◽  
Kostas Stamatopoulos ◽  
...  

Abstract Multiple distinct memory B-cell subsets have been identified in humans, but it remains unclear how their phenotypic diversity corresponds to the type of responses from which they originate. Especially, the contribution of germinal center-independent responses in humans remains controversial. We defined 6 memory B-cell subsets based on their antigen-experienced phenotype and differential expression of CD27 and IgH isotypes. Molecular characterization of their replication history, Ig somatic hypermutation, and class-switch profiles demonstrated their origin from 3 different pathways. CD27−IgG+ and CD27+IgM+ B cells are derived from primary germinal center reactions, and CD27+IgA+ and CD27+IgG+ B cells are from consecutive germinal center responses (pathway 1). In contrast, natural effector and CD27−IgA+ memory B cells have limited proliferation and are also present in CD40L-deficient patients, reflecting a germinal center-independent origin. Natural effector cells at least in part originate from systemic responses in the splenic marginal zone (pathway 2). CD27−IgA+ cells share low replication history and dominant Igλ and IgA2 use with gut lamina propria IgA+ B cells, suggesting their common origin from local germinal center-independent responses (pathway 3). Our findings shed light on human germinal center-dependent and -independent B-cell memory formation and provide new opportunities to study these processes in immunologic diseases.


2018 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
Luke Muir ◽  
Paul F. McKay ◽  
Velislava N. Petrova ◽  
Oleksiy V. Klymenko ◽  
Sven Kratochvil ◽  
...  

Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.


2017 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
Luke Muir ◽  
Paul F. McKay ◽  
Velislava N. Petrova ◽  
Oleksiy V. Klymenko ◽  
Sven Kratochvil ◽  
...  

Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4500-4504 ◽  
Author(s):  
Nadia L. Bernasconi ◽  
Nobuyuki Onai ◽  
Antonio Lanzavecchia

Abstract Toll-like receptors (TLRs) are pattern recognition receptors that trigger innate immunity. In this study we investigated the expression of 10 TLRs in human naive and memory B-cell subsets. We report that in human naive B cells most TLRs are expressed at low to undetectable levels, but the expression of TLR9 and TLR10 is rapidly induced following B-cell-receptor (BCR) triggering. In contrast, memory B cells express several TLRs at constitutively high levels. The differential expression of TLR9 correlates with responsiveness to its agonist, CpG DNA. Thus, human memory B cells proliferate and differentiate to immunoglobulin (Ig)–secreting cells in response to CpG, while naive B do so only if simultaneously triggered through the BCR. The BCR-induced expression of TLRs in human naive B cells prevents polyclonal activation in a primary response, because it restricts stimulation to antigen-specific B cells. In contrast, the constitutive expression of TLRs in memory B cells allows polyclonal activation of the entire memory pool. Thus, in human B cells TLRs are downstream of BCR and play a role both in the primary response and in the memory phase.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 821-821 ◽  
Author(s):  
Sandrine Roulland ◽  
Jean-marc Navarro ◽  
Pierre Grenot ◽  
Michele Milili ◽  
Julie Agopian ◽  
...  

Abstract Follicular lymphoma (FL) is one of the most common B-cell lymphoma, and remains virtually incurable despite its relatively indolent nature. T(14;18)(q32;q21), the genetic hallmark and early initiating event of FL pathogenesis, is also present at low frequency (10−5–10−7) in blood from healthy individuals (HI), indicating that t(14;18) and the ensuing BCL2 overexpression is necessary but not sufficient for malignant transformation. It has long been assumed that in HI, t(14;18) is carried by circulating quiescent naïve B-cells, where its oncogenic potential would be restrained. Yet, several reports, including long-term persistence and immunomodulation of t(14;18)+ cells in lymphoma-free individuals, led us to question this model and investigate the status of circulating t(14;18)+ cells in HI. We first determined if t(14;18)+ cells are naïve B-cells by assessing class-switch recombination (CSR) on the translocated allele. Using 2 long-range PCR assays designed to amplify unswitched BCL2/Sμ and switched BCL2/Sg regions, DNA samples from 6 HI with t(14;18) were tested. Contrary to previous assumptions, our data clearly show that most peripheral t(14;18)+ cells already underwent CSR (n=5/6) and therefore that most t(14;18)+ cells are not naïve B-cells. Are they then memory B cells? Naïve and memory B cell subsets from 9 HI were isolated by cell sorting according to IgD and CD27 markers, and the rate of t(14;18) analyzed in each subset relatively to that of the total B cells. Strikingly, while the level of naïve t(14;18)+ cells remained at baseline for all individuals, memory B-cells tightly accounted for the wide modulation of t(14;18) frequencies observed between individuals. In addition, sequence analysis of t(14;18) clones revealed that this wide modulation was not due to the accumulation of clonally unrelated t(14;18) naïve B-cells, but rather to the clonal expansion of t(14;18)-bearing memory B-cells. To further define the t(14;18)+ cells, we next examined the repartition of the translocation in the IgD−/CD27+ and IgD+/CD27+ memory B-cell subsets. Unexpectedly, we found that the IgD+/CD27+ subset contained significantly higher rates of translocation than the IgD−/CD27+, both in terms of prevalence and frequency. Thus, while CSR is found in the majority of translocated alleles (~75%), most t(14;18)+ memory B cells have not switched their productive allele (~70%) and express an IgM/D. Most importantly, although atypical among physiological peripheral B-cells, this “allelic paradox” is a specific hallmark of FL, and suggests the presence of the same selective pressure in favor of sIgM expression on a B-cell population that is at the same time permanently driven to switch. In line with B-cell hyperplasia in BCL2 transgenic mice slowly progressing to low grade lymphoma, it is likely that “FL-like” cells in HI are rescued by BCL2 from apoptosis, and “frozen” at a differentiation stage in which constitutive AID expression drives continuous somatic hypermutation and CSR activity, two mechanisms conferring a high propensity for genomic instability. Altogether, our findings identify a novel intermediate step in early lymphomagenesis, and strongly impact both on the current understanding of disease progression from potent pre-malignant niches, and on the proper handling of t(14;18) frequency in blood as a potential early biomarker for lymphoma.


2012 ◽  
Vol 209 (10) ◽  
pp. 1797-1812 ◽  
Author(s):  
Emilie M. Fournier ◽  
Maria-Gabriela Velez ◽  
Katelyn Leahy ◽  
Cristina L. Swanson ◽  
Anatoly V. Rubtsov ◽  
...  

Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity.


Author(s):  
Anuradha Rajamanickam ◽  
Nathella Pavan Kumar ◽  
Arul Nancy P ◽  
Nandhini Selvaraj ◽  
Saravanan Munisankar ◽  
...  

It is essential to examine the longevity of the defensive immune response engendered by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We examined the SARS-CoV-2-specific antibody responses and ex vivo memory B-cell subsets in seven groups of individuals with COVID-19 classified based on days since reverse-transcription polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data showed that the levels of IgG and neutralizing antibodies started increasing from days 15 to 30 to days 61 to 90, and plateaued thereafter. The frequencies of naive B cells and atypical memory B cells decreased from days 15 to 30 to days 61 to 90, and plateaued thereafter. In contrast, the frequencies of immature B cells, classical memory B cells, activated memory B cells, and plasma cells increased from days 15 to 30 to days 61 to 90, and plateaued thereafter. Patients with severe COVID-19 exhibited increased frequencies of naive cells, atypical memory B cells, and activated memory B cells, and lower frequencies of immature B cells, central memory B cells, and plasma cells when compared with patients with mild COVID-19. Therefore, our data suggest modifications in memory B-cell subset frequencies and persistence of humoral immunity in convalescent individuals with COVID-19.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Vincenzo Lenti ◽  
Nicola Aronico ◽  
Ivan Pellegrino ◽  
Emanuela Boveri ◽  
Paolo Giuffrida ◽  
...  

AbstractImpaired immune responses have been hypothesised to be a possible trigger of unfavourable outcomes in coronavirus disease 2019 (COVID-19). We aimed to characterise IgM memory B cells in patients with COVID-19 admitted to an internal medicine ward in Northern Italy. Overall, 66 COVID-19 patients (mean age 74 ± 16.6 years; 29 females) were enrolled. Three patients (4.5%; 1 female) had been splenectomised and were excluded from further analyses. Fifty-five patients (87.3%) had IgM memory B cell depletion, and 18 (28.6%) died during hospitalisation (cumulative incidence rate 9.26/100 person-week; 5.8–14.7 95% CI). All patients who died had IgM memory B cell depletion. A superimposed infection was found in 6 patients (9.5%), all of them having IgM memory B cell depletion (cumulative incidence rate 3.08/100 person-week; 1.3–6.8 95% CI). At bivariable analyses, older age, sex, number of comorbidities, and peripheral blood lymphocyte count < 1500/µl were not correlated with IgM memory B cell depletion. A discrete-to-marked reduction of the B-cell compartment was also noticed in autoptic spleen specimens of two COVID-19 patients. We conclude that IgM memory B cells are commonly depleted in COVID-19 patients and this correlates with increased mortality and superimposed infections.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2276-2276
Author(s):  
Sridhar Chaganti ◽  
Cindy Ma ◽  
Andrew Bell ◽  
Debbie Croom-Carter ◽  
Andrew Hislop ◽  
...  

Abstract Epstein-Barr virus (EBV) infects >90% of population world wide and, in healthy virus carriers, establishes life long persistence in the immunoglobulin (Ig)Dneg, CD27+ (“class-switched”) memory B cell compartment normally produced by antigen stimulation and transit through germinal centres. Patients with the X-linked lymphoproliferative disease (XLP) cannot make such class-switched memory B cells due to an inherited mutation in the slam-associated protein (SAP) gene involved in the maturation of antibody responses. Interestingly, XLP patients are highly susceptible to severe primary EBV infection and develop a fulminant infectious mononucleosis (IM) which is often fatal and where the symptoms progress to resemble those of a different (non-familial) disease, EBV-associated haemophagocytosis syndrome (EBV-AHS), caused by virus entry into the NK or T cell system. Some XLP patients survive their primary infection, but the nature of EBV carriage in these individuals (lacking conventional memory B cells) remains unresolved. To investigate this further we obtained blood samples from 8 such XLP patients. EBV load in total peripheral blood mononuclear cells (PBMC), determined by quantitative PCR, occupied a broad range but on average was 2 to 3-fold fold higher than that of healthy controls. The virus was concentrated within the B cell (CD19+) compartment, as in healthy carriers, and not within T or NK cells, as typically seen in EBV-AHS. We then confirmed that these XLP patients indeed lacked conventional class-switched memory B cells but did carry a small population of IgM+, IgD+, CD27+ (“non-switched”) memory cells; however their circulating B cell pool was dominated by naïve (IgM+, IgD+, CD27neg) cells and by expanded numbers of immature “transitional” (CD10+ CD27neg) cells. In each of 4 cases studied by cell sorting, EBV was concentrated in this small subset of “non-switched” memory B cells. To see if the high virus load detected in these patients indicated true virus persistence as opposed to recent or recurrent infection, serial samples obtained over a 3 year period from two XLP patients were assayed. Virus load was stable and, in one case with the highest load, screening with markers of virus polymorphism detected the same resident strain over time. Our results in XLP patients make it clear that EBV can persist in the absence of a conventional class-switched memory B cell compartment. Instead, the virus is sequestered in a small population of “non-class-switched memory” cells with Ig gene mutations. The origin of such cells, which are also detectable in the blood of normal donors, is uncertain; however their existence in XLP patients suggests that such cells arise independently of germinal centre activity and hence that EBV may be able to colonise its host without exploiting germinal centre transit.


2012 ◽  
Vol 375 (1-2) ◽  
pp. 68-74 ◽  
Author(s):  
Greta E. Weiss ◽  
Francis M. Ndungu ◽  
Noah McKittrick ◽  
Shanping Li ◽  
Domtila Kimani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document