scholarly journals Inhibition of atherogenesis by the COP9 signalosome subunit 5 in vivo

2017 ◽  
Vol 114 (13) ◽  
pp. E2766-E2775 ◽  
Author(s):  
Yaw Asare ◽  
Miriam Ommer ◽  
Florence. A. Azombo ◽  
Setareh Alampour-Rajabi ◽  
Marieke Sternkopf ◽  
...  

Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5), an isopeptidase that removes neural precursor cell-expressed, developmentally down-regulated 8 (NEDD8) moieties from cullins (thus termed “deNEDDylase”) and a subunit of the cullin-RING E3 ligase-regulating COP9 signalosome complex, attenuates proinflammatory NF-κB signaling. We previously showed that CSN5 is up-regulated in human atherosclerotic arteries. Here, we investigated the role of CSN5 in atherogenesis in vivo by using mice with myeloid-specific Csn5 deletion. Genetic deletion of Csn5 in Apoe−/− mice markedly exacerbated atherosclerotic lesion formation. This was broadly observed in aortic root, arch, and total aorta of male mice, whereas the effect was less pronounced and site-specific in females. Mechanistically, Csn5 KO potentiated NF-κB signaling and proinflammatory cytokine expression in macrophages, whereas HIF-1α levels were reduced. Inversely, inhibition of NEDDylation by MLN4924 blocked proinflammatory gene expression and NF-κB activation while enhancing HIF-1α levels and the expression of M2 marker Arginase 1 in inflammatory-elicited macrophages. MLN4924 further attenuated the expression of chemokines and adhesion molecules in endothelial cells and reduced NF-κB activation and monocyte arrest on activated endothelium in vitro. In vivo, MLN4924 reduced LPS-induced inflammation, favored an antiinflammatory macrophage phenotype, and decreased the progression of early atherosclerotic lesions in mice. On the contrary, MLN4924 treatment increased neutrophil and monocyte counts in blood and had no net effect on the progression of more advanced lesions. Our data show that CSN5 is atheroprotective. We conclude that MLN4924 may be useful in preventing early atherogenesis, whereas selectively promoting CSN5-mediated deNEDDylation may be beneficial in all stages of atherosclerosis.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2078
Author(s):  
Luca Gelsomino ◽  
Giuseppina Daniela Naimo ◽  
Rocco Malivindi ◽  
Giuseppina Augimeri ◽  
Salvatore Panza ◽  
...  

Aberrant leptin (Ob) signaling, a hallmark of obesity, has been recognized to influence breast cancer (BC) biology within the tumor microenvironment (TME). Here, we evaluated the impact of leptin receptor (ObR) knockdown in affecting BC phenotype and in mediating the interaction between tumor cells and macrophages, the most abundant immune cells within the TME. The stable knockdown of ObR (ObR sh) in ERα-positive and ERα-negative BC cells turned the tumor phenotype into a less aggressive one, as evidenced by in vitro and in vivo models. In xenograft tumors and in co-culture experiments between circulating monocytes and BC cells, the absence of ObR reduced the recruitment of macrophages, and also affected their cytokine mRNA expression profile. This was associated with a decreased expression and secretion of monocyte chemoattractant protein-1 in ObR sh clones. The loss of Ob/ObR signaling modulated the immunosuppressive TME, as shown by a reduced expression of programmed death ligand 1/programmed cell death protein 1/arginase 1. In addition, we observed increased phagocytic activity of macrophages compared to control Sh clones in the presence of ObR sh-derived conditioned medium. Our findings, addressing an innovative role of ObR in modulating immune TME, may open new avenues to improve BC patient health care.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2630
Author(s):  
Hyun-Seok Kim ◽  
Seongsoo Kim ◽  
Byung-Ho Shin ◽  
Chan-Yeong Heo ◽  
Omar Faruq ◽  
...  

Breast augmentations with silicone implants can have adverse effects on tissues that, in turn, lead to capsular contracture (CC). One of the potential ways of overcoming CC is to control the implant/host interaction using immunomodulatory agents. Recently, a high ratio of anti-inflammatory (M2) macrophages to pro-inflammatory (M1) macrophages has been reported to be an effective tissue regeneration approach at the implant site. In this study, a biofunctionalized implant was coated with interleukin (IL)-4 to inhibit an adverse immune reaction and promoted tissue regeneration by promoting polarization of macrophages into the M2 pro-healing phenotype in the long term. Surface wettability, nitrogen content, and atomic force microscopy data clearly showed the successful immobilization of IL-4 on the silicone implant. Furthermore, in vitro results revealed that IL-4-coated implants were able to decrease the secretion of inflammatory cytokines (IL-6 and tumor necrosis factor-α) and induced the production of IL-10 and the upregulation of arginase-1 (mannose receptor expressed by M2 macrophage). The efficacy of this immunomodulatory implant was further demonstrated in an in vivo rat model. The animal study showed that the presence of IL-4 diminished the capsule thickness, the amount of collagen, tissue inflammation, and the infiltration of fibroblasts and myofibroblasts. These results suggest that macrophage phenotype modulation can effectively reduce inflammation and fibrous CC on a silicone implant conjugated with IL-4.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Zheng Chen ◽  
Xiangyu Wei ◽  
Xueyi Wang ◽  
Xuan Zheng ◽  
Bowen Chang ◽  
...  

AbstractNADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2) is a subunit of Complex I of the mitochondrial respiratory chain, which is important in metabolic reprogramming and oxidative stress in multiple cancers. However, the biological role and molecular regulation of NDUFA4L2 in glioblastoma (GBM) are poorly understood. Here, we found that NDUFA4L2 was significantly upregulated in GBM; the elevated levels were correlated with reduced patient survival. Gene knockdown of NDUFA4L2 inhibited tumor cell proliferation and enhanced apoptosis, while tumor cells initiated protective mitophagy in vitro and in vivo. We used lentivirus to reduce expression levels of NDUFA4L2 protein in GBM cells exposed to mitophagy blockers, which led to a significant enhancement of tumor cell apoptosis in vitro and inhibited the development of xenografted tumors in vivo. In contrast to other tumor types, NDUFA4L2 expression in GBM may not be directly regulated by hypoxia-inducible factor (HIF)-1α, because HIF-1α inhibitors failed to inhibit NDUFA4L2 in GBM. Apatinib was able to effectively target NDUFA4L2 in GBM, presenting an alternative to the use of lentiviruses, which currently cannot be used in humans. Taken together, our data suggest the use of NDUFA4L2 as a potential therapeutic target in GBM and demonstrate a practical treatment approach.


2010 ◽  
Vol 21 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Matthew Reid MacPherson ◽  
Patricia Molina ◽  
Serhiy Souchelnytskyi ◽  
Christer Wernstedt ◽  
Jorge Martin-Pérez ◽  
...  

Snail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3β phosphorylation is important for Snail1 functionality. Stabilization mechanisms independent of GSK3β have also been reported, including interaction with LOXL2 or regulation of the COP9 signalosome by inflammatory signals. To get further insights into the role of Snail1 phosphorylation, we have performed an in-depth analysis of in vivo human Snail1 phosphorylation combined with mutational studies. We identify new phosphorylation sites at serines 11, 82, and 92 and confirmed previously suggested phosphorylations at serine 104 and 107. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A corepressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. PKA and CK2 have been characterized as the main kinases responsible for in vitro Snail1 phosphorylation at serine 11 and 92, respectively. These results highlight serines 11 and 92 as new players in Snail1 regulation and suggest the participation of CK2 and PKA in the modulation of Snail1 functionality.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Min Xia ◽  
Krishna M Bioni ◽  
Yang Chen ◽  
Xiang Li ◽  
Ashley L Pitzer ◽  
...  

Nucleotide oligomerization domain (NOD)-like receptor protein with pyrin domain containing 3 (Nlrp3) inflammasome has been reported to be activated by atherogenic factors, thereby triggering endothelial injury and consequent atherosclerotic lesions in the arterial wall. However, the mechanism activating and regulating Nlrp3 inflammasomes remains poorly understood. The present study tested whether membrane raft (MR) signaling platforms associated with acid sphingomyelinase (ASM) and its product ceramide (Ce) importantly contribute to the activation of Nlrp3 inflammasomes and atherosclerotic lesions during hypercholesterolemia (HC). By confocal microscopy and biochemical analyses, we demonstrated the formation and activation of Nlrp3 inflammasomes in the intima of the carotid arteries of Asm +/+ mice with HC (as shown by a 2-fold increase in caspase-1 activity and a 6-fold enhancement of IL-1β positive stain areas), but not in Asm -/- mice. In endothelium-specific ASM transgenic mice (EC-Asm trg ), this inflammasome formation and activation were enhanced. Correspondingly, HC-induced increases in IL-1β production, ASM expression, Ce level and MR-gp91 phox clustering in the carotid intima were abolished in Asm -/- mice, but enhanced in EC-Asm trg mice. Functionally, endothelium-dependent vasodilation (EDVD) in carotid arteries in vivo (by ultrasound flowmetry) and in vitro (in perfused artery) was impaired by HC in Asm +/+ mice by 33% and 54%, respectively. This endothelial dysfunction was not observed in Asm -/- mice. The endothelial tight junction protein, ZO-1 was reduced by HC in both Asm +/+ and EC-Asm trg mice, but not in Asm -/- mice. It was also found that HC-increased neointimal formation, T-cell infiltration, and fibrosis in 2-week partially ligated carotid arteries (PLCA) occurred in Asm +/+ mice, but not in Asm -/- mice with HC. EC-Asm trg mice even exhibited more severe inflammatory and atherosclerotic lesions. All these results suggest that Asm gene and related MR clustering are essential to endothelial inflammasome activation and dysfunction in carotid arteries, ultimately determining the extent of atherosclerotic lesions.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


2019 ◽  
Vol 133 (11) ◽  
pp. 1215-1228 ◽  
Author(s):  
Yu Sun ◽  
Juan Guan ◽  
Yunfeng Hou ◽  
Fei Xue ◽  
Wei Huang ◽  
...  

Abstract Background: Although junctional adhesion molecule-like protein (JAML) has recently been implicated in leukocyte recruitment during inflammation and wound repair, its role in atherosclerosis remains to be elucidated. Methods and results: First, we showed that JAML was strongly expressed in atherosclerotic plaques of cardiovascular patients. Similar results were obtained with atherosclerotic plaques of ApoE−/− mice. Co-immunofluorescence staining showed that JAML was mainly expressed in macrophages. Enhanced expression of JAML in cultured macrophages was observed following exposure of the cells to oxLDL. The functional role of JAML in atherosclerosis and macrophages function was assessed by interference of JAML with shRNA in vivo and siRNA in vitro. Silencing of JAML in mice significantly attenuated atherosclerotic lesion formation, reduced necrotic core area, increased plaque fibrous cap thickness, decreased macrophages content and inflammation. In addition, histological staining showed that JAML deficiency promoted plaques to stable phenotype. In vitro, JAML siRNA treatment lowered the expression of inflammatory cytokines in macrophages treated with oxLDL. The mechanism by which JAML mediated the inflammatory responses may be related to the ERK/NF-κB activation. Conclusions: Our results demonstrated that therapeutic drugs which antagonize the function of JAML may be a potentially effective approach to attenuate atherogenesis and enhance plaque stability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ann-Kathrin Gaiser ◽  
Shanna Bauer ◽  
Stephanie Ruez ◽  
Karlheinz Holzmann ◽  
Marcus Fändrich ◽  
...  

AA amyloidosis belongs to the group of amyloid diseases which can follow chronic inflammatory conditions of various origin. The disease is characterized by the deposition of insoluble amyloid fibrils formed by serum amyloid A1 (SAA1) leading eventually to organ failure. Macrophages are intimately involved in the fibrillogenesis as well as in the clearance of amyloid fibrils. In vivo, macrophages may occur as classically (M1) or alternatively activated (M2) macrophages. We investigate here how SAA1 might affect the macrophage phenotype and function. Gene microarray analysis revealed upregulation of 64 M1-associated genes by SAA1. M1-like polarization was further confirmed by the expression of the M1-marker MARCO, activation of the NF-κB transcription factor, and secretion of the M1-cytokines TNF-α, IL-6, and MCP-1. Additionally, we demonstrate here that M1-polarized macrophages exhibit enhanced fibrillogenic activity towards SAA1. Based on our data, we propose reconsideration of the currently used cellular amyloidosis models towards an in vitro model employing M1-polarized macrophages. Furthermore, the data suggest macrophage repolarization as potential intervention strategy in AA amyloidosis.


2011 ◽  
Vol 140 (5) ◽  
pp. S-19
Author(s):  
Michelle Taylor ◽  
Vandana Gambhir ◽  
Curtis Noordhof ◽  
Oliver Jones ◽  
Shu-Mei He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document