scholarly journals Redox properties of birnessite from a defect perspective

2017 ◽  
Vol 114 (36) ◽  
pp. 9523-9528 ◽  
Author(s):  
Haowei Peng ◽  
Ian G. McKendry ◽  
Ran Ding ◽  
Akila C. Thenuwara ◽  
Qing Kang ◽  
...  

Birnessite, a layered-structure MnO2, is an earth-abundant functional material with potential for various energy and environmental applications, such as water oxidation. An important feature of birnessite is the existence of Mn(III) within the MnO2 layers, accompanied by interlayer charge-neutralizing cations. Using first-principles calculations, we reveal the nature of Mn(III) in birnessite with the concept of the small polaron, a special kind of point defect. Further taking into account the effect of the spatial distribution of Mn(III), we propose a theoretical model to explain the structure–performance dependence of birnessite as an oxygen evolution catalyst. We find an internal potential step which leads to the easy switching of the oxidation state between Mn(III) and Mn(IV) that is critical for enhancing the catalytic activity of birnessite. Finally, we conduct a series of comparative experiments which support our model.

2009 ◽  
Vol 373 (31) ◽  
pp. 2796-2799 ◽  
Author(s):  
Chuying Ouyang ◽  
Yanlan Du ◽  
Siqi Shi ◽  
Minsheng Lei

2007 ◽  
Vol 90 (3) ◽  
pp. 031909 ◽  
Author(s):  
D. A. Andersson ◽  
S. I. Simak ◽  
N. V. Skorodumova ◽  
I. A. Abrikosov ◽  
B. Johansson

2016 ◽  
Vol 18 (32) ◽  
pp. 22196-22202 ◽  
Author(s):  
Kruthika Ganesan ◽  
P. Murugan

In the presence of an oxygen vacancy, two water molecules in the tunnel of an α-MnO2 lattice form a dimer and dissociate into ions, which can activate water oxidation. And also self-healing can happen if at least one more water molecule is available in the tunnel for proton transport.


2018 ◽  
Vol 17 (06) ◽  
pp. 1850038 ◽  
Author(s):  
Jingjuan Yang ◽  
Xiaoxiao Han ◽  
Peipei Yuan ◽  
Baoan Bian ◽  
Bin Liao

We perform first-principles calculations to investigate the electronic transport properties of chalcone and flavanone molecules sandwiched between graphene electrodes. These two molecules can be reversibly converted between open and closed states induced by pH, and the significant switching behaviors are observed. The currents and switching ratios are influenced by rotating molecules around the [Formula: see text] axis, which are discussed by the transmission eigenstates, electrostatic potential distributions and transmission spectra. The observed negative differential resistance effect is explained in chalcone configuration. The results suggest that spatial distributions of molecules will influence the performance of devices, indicating a potential application in future molecular circuits.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Sign in / Sign up

Export Citation Format

Share Document