scholarly journals Suppressing viscous fingering in structured porous media

2018 ◽  
Vol 115 (19) ◽  
pp. 4833-4838 ◽  
Author(s):  
Harris Sajjad Rabbani ◽  
Dani Or ◽  
Ying Liu ◽  
Ching-Yao Lai ◽  
Nancy B. Lu ◽  
...  

Finger-like protrusions that form along fluid−fluid displacement fronts in porous media are often excited by hydrodynamic instability when low-viscosity fluids displace high-viscosity resident fluids. Such interfacial instabilities are undesirable in many natural and engineered displacement processes. We report a phenomenon whereby gradual and monotonic variation of pore sizes along the front path suppresses viscous fingering during immiscible displacement, that seemingly contradicts conventional expectation of enhanced instability with pore size variability. Experiments and pore-scale numerical simulations were combined with an analytical model for the characteristics of displacement front morphology as a function of the pore size gradient. Our results suggest that the gradual reduction of pore sizes act to restrain viscous fingering for a predictable range of flow conditions (as anticipated by gradient percolation theory). The study provides insights into ways for suppressing unwanted interfacial instabilities in porous media, and provides design principles for new engineered porous media such as exchange columns, fabric, paper, and membranes with respect to their desired immiscible displacement behavior.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Jorge Avendaño ◽  
Nicolle Lima ◽  
Antonio Quevedo ◽  
Marcio Carvalho

Wettability has a dramatic impact on fluid displacement in porous media. The pore level physics of one liquid being displaced by another is a strong function of the wetting characteristics of the channel walls. However, the quantification of the effect is still not clear. Conflicting data have shown that in some oil displacement experiments in rocks, the volume of trapped oil falls as the porous media becomes less water-wet, while in some microfluidic experiments the volume of residual oil is higher in oil-wet media. The reasons for this discrepancy are not fully understood. In this study, we analyzed oil displacement by water injection in two microfluidic porous media with different wettability characteristics that had capillaries with constrictions. The resulting oil ganglia size distribution at the end of water injection was quantified by image processing. The results show that in the oil-wet porous media, the displacement front was more uniform and the final volume of remaining oil was smaller, with a much smaller number of large oil ganglia and a larger number of small oil ganglia, when compared to the water-wet media.


1981 ◽  
Vol 21 (02) ◽  
pp. 249-258 ◽  
Author(s):  
Ekwere J. Peters ◽  
Donald L. Flock

Abstract This paper presents a dimensionless number and its critical value for predicting the onset of instability during immiscible displacement in porous media. The critical dimensionless number obtained from a stability theory for a cylindrical system successfully predicted the onset of instability in laboratory floods. Therefore, this number can be used to classify the stability of two-phase incompressible displacements in homogeneous porous media. Introduction When a fluid displaces a more viscous fluid, the displacement front may become unstable, resulting in viscous fingering. This phenomenon raises both practical and theoretical concerns. Apart from further reducing the displacement efficiency of an already inefficient displacement arrangement, instability may invalidate the usual method of simulating immiscible displacement performance based on relative permeability and capillary pressure concepts. Also, it introduces an additional scaling requirement for using model tests to forecast prototype displacement results. Therefore, it would be most beneficial to predict the onset of instability, so as to avoid viscous fingering, or, where it is unavoidable, to be able to recognize it as a factor in the displacement.The onset of instability call be predicted by a stability analysis of the displacement. The objective of such an analysis is to determine the conditions under which small disturbances or perturbations of the displacement front will grow to become viscous fingers. Ideally, the analysis should give a universal dimensionless scaling group together with its critical value above which instability will occur. The stability classification then would entail no more than the calculation of one dimensionless number in a manner analogous to the calculation of a Reynolds number to distinguish between laminar and turbulent flow.Several stability studies of immiscible displacement have been reported in the literature. Collectively, they show that these variables are pertinent to the stability problem:mobility (or viscosity) ratio,displacement velocity, system geometry and dimensions,capillary and gravitational forces, andsystem permeability and wettability. However, none of the previous studies have combined these variables into one dimensionless number that can be used to quantify the stability classification.The objective of this study was to obtain, by means of a stability analysis, a universal dimensionless scaling group and its critical value for predicting the onset of instability during immiscible displacement in porous media. This paper shows how the stability theory of Chuoke et al. was extended to achieve this objective and presents the results of laboratory floods that confirm the predicted onset of instability in cylindrical cores. Theory The pertinent dimensionless number for predicting the onset of instability was obtained by extending the stability theory of Chuoke et al. Their theory was based on a piston-like unperturbed displacement model in which the oil and water zones are separated by a planar interface. Details of the theory and our extension of it are presented in the following sections. SPEJ P. 249^


Author(s):  
Tatyana Lyubimova ◽  
Andrey Ivantsov ◽  
Dmitry Lyubimov

In applications involving the injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. Displacement fronts moving in porous media are subjected to hydrodynamic instability when a liquid of low viscosity displaces a high-viscosity liquid and consequently finger-like structure forms along the interface. This finger instability is usually undesirable in technical applications and natural filtration processes. We discuss the external periodic forcing as one of the promising ways to control the instability and perform numerical simulation of an initially spherical drop in a porous media under vertical vibrations. The drop is favorable object to study since in this case one can observe the effect of vibrations on fluid interface domains inclined by different angles with respect to vibration axis. It is shown that under vibrations small-scale perturbations of interface are suppressed and in the case of vibrations of large enough intensity the drop becomes stable. The stability criterion is derived.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


Sign in / Sign up

Export Citation Format

Share Document