scholarly journals Biomass losses resulting from insect and disease invasions in US forests

2019 ◽  
Vol 116 (35) ◽  
pp. 17371-17376 ◽  
Author(s):  
Songlin Fei ◽  
Randall S. Morin ◽  
Christopher M. Oswalt ◽  
Andrew M. Liebhold

Worldwide, forests are increasingly affected by nonnative insects and diseases, some of which cause substantial tree mortality. Forests in the United States have been invaded by a particularly large number (>450) of tree-feeding pest species. While information exists about the ecological impacts of certain pests, region-wide assessments of the composite ecosystem impacts of all species are limited. Here we analyze 92,978 forest plots distributed across the conterminous United States to estimate biomass loss associated with elevated mortality rates caused by the 15 most damaging nonnative forest pests. We find that these species combined caused an additional (i.e., above background levels) tree mortality rate of 5.53 TgC per year. Compensation, in the form of increased growth and recruitment of nonhost species, was not detectable when measured across entire invaded ranges but does occur several decades following pest invasions. In addition, 41.1% of the total live forest biomass in the conterminous United States is at risk of future loss from these 15 pests. These results indicate that forest pest invasions, driven primarily by globalization, represent a huge risk to US forests and have significant impacts on carbon dynamics.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Rabiu O. Olatinwo ◽  
Stephen W. Fraedrich ◽  
Albert E. Mayfield

In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value.


1958 ◽  
Vol 49 (4) ◽  
pp. 631-632
Author(s):  
Hahn W. Capps

The cotton stem moth, Platyedra vilella (Zeller), was not known to occur in the United States prior to 1951. In August of that year, larvae of the species were found infesting hollyhock plants at Mineola, New York, by J. H. Maheny, a plant quarantine inspector of the port of New York. Adults were reared from additional material collected the following year, an indication that the species had become established. How or when P. vilella was introduced has not been determined, but doubtless it was only recently.


2007 ◽  
Vol 34 (2) ◽  
pp. 108 ◽  
Author(s):  
Gary W. Witmer ◽  
Frank Boyd ◽  
Zandy Hillis-Starr

The United States National Park Service and the United States Wildlife Services made a planned and sustained effort to eradicate the introduced roof rats (Rattus rattus) from Buck Island Reef National Monument in the Caribbean Sea during 1998–2000. The rats were causing substantial damage to a variety of the 80-ha island’s floral and faunal resources. An island-wide grid of elevated bait stations containing anticoagulant (0.005% diphacinone; 50 ppm) rodenticide bait blocks were used to eradicate the rats. The bait stations were modified several times to assure ready access by rats while minimising access by non-target animals, especially crabs and birds. Numerous post-project trapping sessions over six years resulted in no rat captures, suggesting that, indeed, the rats had been eradicated from the island. No non-target losses resulting from the baiting program were observed by field personnel, but they noted what appeared to be a recovery of some of the island’s floral and faunal resources. There have been no depredations of endangered sea turtle nests since the eradication. Post-project monitoring sessions revealed the presence of a growing house mouse (Mus musculus) population on the island. The threats posed by, and potential management strategies for, this introduced pest species are being investigated. This is the first successful rat eradication on a sizable island, using diphacinone bait blocks with a unique, elevated bait-station system. Diphacinone can provide an alternative to the highly toxic brodifacoum and may help reduce non-target hazards in some situations, although several applications are generally required.


2019 ◽  
Vol 65 (5) ◽  
pp. 593-601
Author(s):  
James A Westfall ◽  
Megan B E Westfall ◽  
KaDonna C Randolph

Abstract Tree crown ratio is useful in various applications such as prediction of tree mortality probabilities, growth potential, and fire behavior. Crown ratio is commonly assessed in two ways: (1) compacted crown ratio (CCR—lower branches visually moved upwards to fill missing foliage gaps) and (2) uncompacted crown ratio (UNCR—no missing foliage adjustment). The national forest inventory of the United States measures CCR on all trees, whereas only a subset of trees also are assessed for UNCR. Models for 27 species groups are presented to predict UNCR for the northern United States. The model formulation is consistent with those developed for other US regions while also accounting for the presence of repeated measurements and heterogeneous variance in a mixed-model framework. Ignoring random-effects parameters, the fit index values ranged from 0.43 to 0.78, and root mean squared error spanned 0.08–0.15; considerable improvements in both goodness-of-fit statistics were realized via inclusion of the random effects. Comparison of UNCR predictions with models developed for the southern United States exhibited close agreement, whereas comparisons with models used in Forest Vegetation Simulator variants indicated poor association. The models provide additional analytical flexibility for using the breadth of northern region data in applications where UNCR is the appropriate crown characteristic.


Rural History ◽  
1999 ◽  
Vol 10 (2) ◽  
pp. 235-257 ◽  
Author(s):  
Heather M. Cox ◽  
Brendan G. DeMelle ◽  
Glenn R. Harris ◽  
Christopher P. Lee ◽  
Laura K. Montondo

The St. Lawrence Seaway and Power Project was a massive restructuring of the St. Lawrence River bordering Canada and the United States. The river had always been used for human transportation, and a shipping canal for commercial vehicles was constructed and enhanced throughout the nineteenth century. However, the river grew increasingly incapable of handling an international fleet composed of larger boats during the twentieth century. Proposals to undertake major renovations for shipping were debated at the highest levels of policy for several decades. Finally, the St. Lawrence River was substantially altered during the 1950s. These changes created a Seaway able to accommodate vessels with deeper drafts and permitted the development of hydro-electric generating facilities through the construction of dikes and dams. All of this activity involved numerous agencies in the governments of the United States, Canada, the Iroquois Confederacy, New York, Ontario, other states and provinces, as well as commercial and industrial entities in the private sector.


2017 ◽  
Vol 20 (4) ◽  
pp. 426-435 ◽  
Author(s):  
Emma J. Hudgins ◽  
Andrew M. Liebhold ◽  
Brian Leung

HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 101-103 ◽  
Author(s):  
T.G. Beckman ◽  
P.L. Pusey

Armillaria root rot is the second leading cause of peach tree mortality (after peach tree short life) in the southeastern United States. Currently, there are no commercially available rootstocks for peach with proven resistance to this pathogen in the United States. Since 1983, we have been screening rootstock candidates for resistance to Armillaria utilizing naturally infected field sites. Inoculation of peach [Prunus persica (L.) Batsch], plum (P. cerasifera J.F. Ehrh., P. munsoniana F.W. Wight & Hedr., P. salicina Lindl. or P. angustifolia Marsh.) × peach and plum × plum hybrid rootstocks with infected plant tissue (such as acorns, Quercus sp.) prior to planting has provided a significantly increased infection and mortality of candidate rootstock lines in comparison with sole reliance on natural inoculum on an infested site.


2020 ◽  
Vol 113 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Theresa M Crimmins ◽  
Katharine L Gerst ◽  
Diego G Huerta ◽  
R Lee Marsh ◽  
Erin E Posthumus ◽  
...  

Abstract Insect pests cost billions of dollars per year globally, negatively impacting food crops and infrastructure, and contributing to the spread of disease. Timely information regarding developmental stages of pests can facilitate early detection and control, increasing efficiency and effectiveness. In 2018, the U.S. National Phenology Network (USA-NPN) released a suite of ‘Pheno Forecast’ map products relevant to science and management. The Pheno Forecasts include real-time maps and short-term forecasts of insect pest activity at management-relevant spatial and temporal resolutions and are based on accumulated temperature thresholds associated with critical life-cycle stages of economically important pests. Pheno Forecasts indicate, for a specified day, the status of the insect’s target life-cycle stage in real time across the contiguous United States. The maps are available for 12 pest species including the invasive emerald ash borer (Agrilus planipennis Fairmaire [Coleoptera: Buprestidae]), hemlock woolly adelgid (Adelges tsugae Annand), and gypsy moth (Lymantria dispar Linnaeus [Lepidoptera: Erebidae]). Preliminary validation based on in-situ observations for hemlock woolly adelgid egg and nymph stages in 2018 indicated the maps to be ≥93% accurate depending on phenophase. Since their release in early 2018, these maps have been adopted by tree care specialists and foresters across the United States. Using a consultative mode of engagement, USA-NPN staff have continuously sought input and critique of the maps and delivery from end users. Based on feedback received, maps have been expanded and modified to include additional species, improved descriptions of the phenophase event of interest, and e-mail-based notifications to support management decisions.


Sign in / Sign up

Export Citation Format

Share Document