scholarly journals The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1

2019 ◽  
Vol 116 (45) ◽  
pp. 22872-22883 ◽  
Author(s):  
Simon Michaeli ◽  
Marion Clavel ◽  
Esther Lechner ◽  
Corrado Viotti ◽  
Jian Wu ◽  
...  

RNA silencing is a major antiviral defense mechanism in plants and invertebrates. Plant ARGONAUTE1 (AGO1) is pivotal in RNA silencing, and hence is a major target for counteracting viral suppressors of RNA-silencing proteins (VSRs). P0 from Turnip yellows virus (TuYV) is a VSR that was previously shown to trigger AGO1 degradation via an autophagy-like process. However, the identity of host proteins involved and the cellular site at which AGO1 and P0 interact were unknown. Here we report that P0 and AGO1 associate on the endoplasmic reticulum (ER), resulting in their loading into ER-associated vesicles that are mobilized to the vacuole in an ATG5- and ATG7-dependent manner. We further identified ATG8-Interacting proteins 1 and 2 (ATI1 and ATI2) as proteins that associate with P0 and interact with AGO1 on the ER up to the vacuole. Notably, ATI1 and ATI2 belong to an endogenous degradation pathway of ER-associated AGO1 that is significantly induced following P0 expression. Accordingly, ATI1 and ATI2 deficiency causes a significant increase in posttranscriptional gene silencing (PTGS) activity. Collectively, we identify ATI1 and ATI2 as components of an ER-associated AGO1 turnover and proper PTGS maintenance and further show how the VSR P0 manipulates this pathway.

2021 ◽  
Author(s):  
Marion Clavel ◽  
Esther Lechner ◽  
Marco Incarbone ◽  
Timothée Vincent ◽  
Valérie Cognat ◽  
...  

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. We also identify vascular novel secondary siRNA produced from conserved plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA, supporting a viral strategy to modulate host response. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 416 ◽  
Author(s):  
Carla Varanda ◽  
Patrick Materatski ◽  
Maria Campos ◽  
Maria Clara ◽  
Gustavo Nolasco ◽  
...  

RNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress this mechanism. In this study, the genome of the Olive mild mosaic virus (OMMV) was screened for silencing suppressors. The full OMMV cDNA and 5 OMMV open reading frames (ORFs) were cloned into the Gateway binary vector pK7WG2, transformed into Agrobacterium tumefaciens, and agroinfiltrated into N. benthamiana 16C plants. CP and p6 showed suppressor activity, with CP showing significantly higher activity than p6, yet activity that was lower than the full OMMV, suggesting a complementary action of CP and p6. These viral suppressors were then used to induce OMMV resistance in plants based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants, which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a significant reduction in viral accumulation and symptom attenuation was observed as compared to those of the controls, as well as to when each construct was used alone, proving them to be effective against OMMV infection. This is the first time that a silencing suppressor was found in a necrovirus, and that two independent proteins act as silencing suppressors in a virus member of the Tombusviridae family.


2020 ◽  
Vol 21 (19) ◽  
pp. 7136
Author(s):  
Qian Sun ◽  
Tao Zhuo ◽  
Tianyu Zhao ◽  
Cuiji Zhou ◽  
Yuanyuan Li ◽  
...  

To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230–270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0–SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.


2020 ◽  
Author(s):  
Aayushi Shukla ◽  
Gesa Hoffmann ◽  
Silvia López-González ◽  
Daniel Hofius ◽  
Anders Hafrén

AbstractAutophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The elucidated mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defence pathways in disease development remains poorly understood. In the current study, we analysed the interaction between autophagy and Cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major CMV virulence protein and RNA silencing suppressor 2b. Intriguingly, 2b itself dampens plant autophagy. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing pathways contribute to plant longevity and fecundity of CMV infected plants in an additive manner, uncoupling it from resistance. In addition to reduced fecundity, autophagy-deficient plants also failed to support seed transmission of the virus. We propose that autophagy attenuates CMV virulence via 2b degradation and thereby increases both plant and virus fitness with a trade-off penalty arising from increased RNA silencing-mediated resistance.Author summaryThe capacity of plants to fight pathogenic viruses in order to survive and minimize damage relies on profound cellular reprogramming events. These include the synthesis of new as well as the degradation of pre-existing cellular components, together shifting cellular homeostasis towards a better tolerance of disease and fortification of antiviral defence mechanisms. Autophagy is a prominent and highly conserved cellular degradation pathway that supports plant stress resilience. Autophagy functions vary broadly and range from rather unspecific renewal of cytoplasm to highly selective degradation of a wide collection of specific substrates. Autophagy is well established to be involved during virus infections in animals, and its importance has also recently emerged in virus diseases of plants. However, we are still far from a comprehensive understanding of the complexity of autophagy activities in host-virus interactions and how autophagy pathway engineering could be applied against viruses. Here, we have analyzed one of the traditional model plant viruses, Cucumber mosaic virus (CMV), and its interactions with autophagy. Our study revealed that autophagy is tightly integrated into CMV disease, influencing processes from plant health to CMV epidemiology.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


2015 ◽  
Vol 112 (36) ◽  
pp. E5048-E5057 ◽  
Author(s):  
Mona W. Orr ◽  
Gregory P. Donaldson ◽  
Geoffrey B. Severin ◽  
Jingxin Wang ◽  
Herman O. Sintim ◽  
...  

The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A fromPseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆ornstrains ofP. aeruginosaPA14 for pGpG stability. The lysates from ∆ornshowed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆ornstrain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP–regulatedpelpromoter. Additionally, the c-di-GMP–governed auto-aggregation and biofilm phenotypes were elevated in the ∆ornstrain in apel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆ornstrain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.


1992 ◽  
Vol 284 (1) ◽  
pp. 169-176 ◽  
Author(s):  
T R Hughes ◽  
S J Piddlesden ◽  
J D Williams ◽  
R A Harrison ◽  
B P Morgan

The membrane attack complex (MAC) of complement in humans is regulated by several membrane-bound proteins; however, no such proteins have so far been described in other species. Here we report the isolation and characterization of a rat erythrocyte membrane glycoprotein of molecular mass 21 kDa which inserts into cell membranes and is a potent inhibitor of the rat MAC. This protein, here called rat inhibitory protein (RIP), was first partially purified by column chromatography from a butanol extract of rat erythrocyte membranes. Monoclonal antibodies (Mabs) were raised against RIP and used for its affinity purification. Affinity-purified RIP was shown to inhibit in a dose-dependent manner the cobra venom factor (CVF)-mediated ‘reactive’ lysis of guinea pig erythrocytes by rat complement. Conversely, the anti-RIP MAbs 6D1 and TH9 were shown to markedly enhance the CVF-mediated lysis of rat erythrocytes by rat complement. RIP acted late in the assembly of the MAC (at or after the C5b-8 stage) and was releasable from the membranes of rat erythrocytes by phosphatidylinositol-specific phospholipase C. These features, together with its size, deglycosylation pattern and N-terminal amino acid sequence, lead us to conclude that RIP is the rat homologue of the human MAC-inhibitory protein CD59 antigen.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Mei Ji ◽  
Zhao Zhao ◽  
Yue Li ◽  
Penglin Xu ◽  
Jia Shi ◽  
...  

AbstractRNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document