scholarly journals The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers

2020 ◽  
Vol 117 (9) ◽  
pp. 4518-4526 ◽  
Author(s):  
Hao Su ◽  
Feihu Wang ◽  
Wei Ran ◽  
Weijie Zhang ◽  
Wenbing Dai ◽  
...  

The inception and development of supramolecular chemistry have provided a vast library of supramolecular structures and materials for improved practice of medicine. In the context of therapeutic delivery, while supramolecular nanostructures offer a wide variety of morphologies as drug carriers for optimized targeting and controlled release, concerns are often raised as to how their morphological stability and structural integrity impact their in vivo performance. After intravenous (i.v.) administration, the intrinsic reversible and dynamic feature of supramolecular assemblies may lead them to dissociate upon plasma dilution to a concentration below their critical micellization concentration (CMC). As such, CMC represents an important characteristic for supramolecular biomaterials design, but its pharmaceutical role remains elusive. Here, we report the design of a series of self-assembling prodrugs (SAPDs) that spontaneously associate in aqueous solution into supramolecular polymers (SPs) with varying CMCs. Two hydrophobic camptothecin (CPT) molecules were conjugated onto oligoethylene-glycol (OEG)-decorated segments with various OEG repeat numbers (2, 4, 6, 8). Our studies show that the lower the CMC, the lower the maximum tolerated dose (MTD) in rodents. When administrated at the same dosage of 10 mg/kg (CPT equivalent), SAPD 1, the one with the lowest CMC, shows the best efficacy in tumor suppression. These observations can be explained by the circulation and dissociation of SAPD SPs and the difference in molecular and supramolecular distribution between excretion and organ uptake. We believe these findings offer important insight into the role of supramolecular stability in determining their therapeutic index and in vivo efficacy.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


1989 ◽  
Vol 256 (6) ◽  
pp. E747-E752 ◽  
Author(s):  
C. P. Felley ◽  
E. M. Felley ◽  
G. D. van Melle ◽  
P. Frascarolo ◽  
E. Jequier ◽  
...  

The present study was designed to assess the role of hyperglycemia (150 mg/dl) vs. euglycemia (90 mg/dl) on glucose metabolism in vivo during the infusion of a triglyceride emulsion (Intralipid). Seven young healthy volunteers were studied on four occasions using the hyperinsulinemic clamp technique, twice during euglycemia and twice during hyperglycemia, without or with Intralipid. Glucose oxidation (O) was calculated from continuous respiratory exchange measurements, and glucose storage (S) was obtained as the difference between total glucose disposal (M) and O. Two-way analysis of variance with interaction term demonstrated 1) a significant increase for M with hyperglycemia and a decrease with Intralipid; no interaction, and 2) in euglycemia, O/M and S/M occurred in one-to-one ratios; on the other hand, during 150-mg/dl hyperglycemia, the ratio dropped roughly to 1:2. Intralipid had no effect on the ratio, and no interaction could be observed. These results suggest the existence of physiological regulatory mechanisms by which 1) the rise in plasma free fatty acid inhibits both oxidative and nonoxidative glucose disposal, and 2) the rise in glycemia stimulates predominantly nonoxidative glucose disposal.


1978 ◽  
Vol 174 (3) ◽  
pp. 965-977 ◽  
Author(s):  
J R S Arch ◽  
E A Newsholme

1. The maximal activities of 5′-nucleotidase, adenosine kinase and adenosine deaminase together with the Km values for their respective substrates were measured in muscle, nervous tissue and liver from a large range of animals to provide information on the mechanism of control of adenosine concentration in the tissues. 2. Detailed evidence that the methods used were optimal for the extraction and assay of these enzymes has been deposited as Supplementary Publication SUP 50088 (16pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K.,from whom copies can be obtained on the terms indicated in Biochem. J. (1978), 169, 5. This evidence includes the effects of pH and temperature on the activities of the enzymes. 3. In many tissues, the activities of 5′-nucleotidase were considerably higher than the sum of the activities of adenosine kinase and deaminase, which suggests that the activity of the nucleotidase must be markedly inhibited in vivo so that adenosine does not accumulate. In the tissues in which comparison is possible, the Km of the nucleotidase is higher than the AMP content of the tissue, and since some of the latter may be bound within the cell, the low concentration of substrate may, in part, be responsible for a low activity in vivo. 4. In most tissues and animals investigated, the values of the Km of adenosine kinase for adenosine are between one and two orders of magnitude lower than those for the deaminase. It is suggested that 5′-nucleotidase and adenosine kinase are simultaneously active so that a substrate cycle between AMP and adenosine is produced: the difference in Km values between kinase and deaminase indicates that, via the cycle, small changes in activity of kinase or nucleotidase produce large changes in adenosine concentration. 5. The activities of adenosine kinase or deaminase from vertebrate muscles are inversely correlated with the activities of phosphorylase in these muscles. Since the magnitude of the latter activities are indicative of the anaerobic nature of muscles, this negative correlation supports the hypothesis that an important role of adenosine is the regulation of blood flow in the aerobic muscles.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 415 ◽  
Author(s):  
Naveed Sabir ◽  
Tariq Hussain ◽  
Yi Liao ◽  
Jie Wang ◽  
Yinjuan Song ◽  
...  

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1157-1165 ◽  
Author(s):  
Daniel A. Vallera ◽  
David W. Kuroki ◽  
Angela Panoskaltsis-Mortari ◽  
Donald J. Buchsbaum ◽  
Buck E. Rogers ◽  
...  

Abstract Immunotoxin (IT) therapy shows potential for selectively eliminating GVHD-causing T cells in vivo, but the field has been hampered by toxicity. Previously, we showed that a genetically engineered IT consisting of a single-chain protein, including the anti-CD3sFv spliced to a portion of diphtheria-toxin (DT390) has anti-GVHD effects, but pronounced organ toxicity common to this class of agent. A recombinant DT390 anti-CD3sFv protein previously shown to have anti-GVHD activity was modified to reduce its filtration into kidney by genetically inserting a cysteine residue downstream of the sFv moiety at the c-terminus of the protein. This modification produced an intermolecular disulfide bridge, resulting in a bivalent, rather than a monovalent IT, termed SS2, that selectively inhibited T-cell proliferation in vitro. Although monomer and SS2 were similar in in vitro activity, SS2 had a superior therapeutic index in vivo with at least 8-fold more being tolerated with reduced kidney toxicity. Most importantly, in a lethal model of GVHD, 40 μg SS2 given for 1 day, protected 100% of the mice from lethal GVHD for 3 months, whereas the maximum tolerated dose (MTD) of monomer protected only 33%. To our knowledge, this is the first time disulfide bonded ITs have been created in this way and this simple molecular modification may address several problems in the IT field because it (1) markedly increased efficacy curing mice of GVHD after a single daily treatment, (2) markedly decreased organ toxicity, (3) increased the tolerated dosage, and (4) created a therapeutic window where none existed before.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1157-1165 ◽  
Author(s):  
Daniel A. Vallera ◽  
David W. Kuroki ◽  
Angela Panoskaltsis-Mortari ◽  
Donald J. Buchsbaum ◽  
Buck E. Rogers ◽  
...  

Immunotoxin (IT) therapy shows potential for selectively eliminating GVHD-causing T cells in vivo, but the field has been hampered by toxicity. Previously, we showed that a genetically engineered IT consisting of a single-chain protein, including the anti-CD3sFv spliced to a portion of diphtheria-toxin (DT390) has anti-GVHD effects, but pronounced organ toxicity common to this class of agent. A recombinant DT390 anti-CD3sFv protein previously shown to have anti-GVHD activity was modified to reduce its filtration into kidney by genetically inserting a cysteine residue downstream of the sFv moiety at the c-terminus of the protein. This modification produced an intermolecular disulfide bridge, resulting in a bivalent, rather than a monovalent IT, termed SS2, that selectively inhibited T-cell proliferation in vitro. Although monomer and SS2 were similar in in vitro activity, SS2 had a superior therapeutic index in vivo with at least 8-fold more being tolerated with reduced kidney toxicity. Most importantly, in a lethal model of GVHD, 40 μg SS2 given for 1 day, protected 100% of the mice from lethal GVHD for 3 months, whereas the maximum tolerated dose (MTD) of monomer protected only 33%. To our knowledge, this is the first time disulfide bonded ITs have been created in this way and this simple molecular modification may address several problems in the IT field because it (1) markedly increased efficacy curing mice of GVHD after a single daily treatment, (2) markedly decreased organ toxicity, (3) increased the tolerated dosage, and (4) created a therapeutic window where none existed before.


2001 ◽  
Vol 281 (1) ◽  
pp. R1-R9 ◽  
Author(s):  
A. R. Tagliaferro ◽  
A. M. Ronan

The biological role of dehydroepiandrosterone (DHEA) and its less active sulphated conjugate DHEAS was investigated in two experiments using Yucatan miniature swine. In experiment 1, plasma levels of both DHEA(S) among males were greater than female pigs that ranged in age from 0.3 to 84 mo old ( P< 0.0001). In males, DHEA(S) were related inversely to serum triglycerides; DHEA was positively related to triglycerides in females ( P < 0.01). In experiment 2, four 2-yr old male pigs, used as their own control, showed a 5% decrease in body weight, 11% increase in energy expenditure, 88% increase in lipid, and 100% decrease in glucose utilization ( P < 0.0001) in response to DHEA vs. placebo treatments when adjusted for body weight. Plasma DHEA(S) were not different between treatment conditions. Glucose tolerance and plasma insulin levels were not different from controls. In vivo response to norepinephrine indicated β-adrenergic sensitivity was altered by DHEA. Present findings suggest DHEA and/or its hormone products are important in modulating energy expenditure and lipid utilization for energy in male animals. The role of DHEA in energy metabolism and the difference between sexes warrant further investigation.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Margarida Ferreira-Silva ◽  
Catarina Faria-Silva ◽  
Manuela C. Carvalheiro ◽  
Sandra Simões ◽  
Helena Susana Marinho ◽  
...  

Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.


1976 ◽  
Vol 54 (23) ◽  
pp. 2609-2619 ◽  
Author(s):  
Lorne J. Duczek ◽  
Verna J. Higgins

Helminthosporium carbonum, a corn pathogen, and Stemphylium botryosum, an alfalfa pathogen, are both nonpathogenic on red clover (Trifolium pratense L.), while S. sarcinaeforme is a foliar pathogen on red clover. In clover leaves challenged with H. carbonum, medicarpin and maackiain were the only inhibitory compounds found in diffusates or in leaf tissue in a concentration sufficient to account for the inhibition of this fungus. Helminthosporium carbonum was inhibited by and could not degrade medicaipin and (or) maackiain in vitro. Both S. botryosum and S. sarcinaeforme were only slightly inhibited by these compounds in mycelial growth bioassays, and both fungi degraded medicarpin and (or) maackiain in vitro and some evidence was obtained that degradation occurred in vivo. In contrast with the relatively high amounts of medicarpin and maackiain that accumulated in leaves challenged with H. carbonum, relatively low amounts accumulated in leaves challenged with either S. botryosum or S. sarcinaeforme. The evidence suggests that the resistance of clover to H. carbonum can be accounted for by these phytoalexins; however, differences in relation to accumulation of, inhibition by, and breakdown of medicarpin and (or) maackiain were not enough to explain the difference in pathogenicity of S. botryosum and S. sarcinaeforme on red clover.


2009 ◽  
Vol 103 (2) ◽  
pp. 295-305 ◽  
Author(s):  
John A. Monro ◽  
Suman Mishra ◽  
Bernard Venn

Glycaemic responses to foods reflect the balance between glucose loading into, and its clearance from, the blood. Current in vitro methods for glycaemic analysis do not take into account the key role of glucose disposal. The present study aimed to develop a food intake-sensitive method for measuring the glycaemic impact of food quantities usually consumed, as the difference between release of glucose equivalents (GGE) from food during in vitro digestion and a corresponding estimate of clearance of them from the blood. Five foods – white bread, fruit bread, muesli bar, mashed potato and chickpeas – were consumed on three occasions by twenty volunteers to provide blood glucose response (BGR) curves. GGE release during in vitro digestion of the foods was also plotted. Glucose disposal rates estimated from downward slopes of the BGR curves allowed GGE dose-dependent cumulative glucose disposal to be calculated. By subtracting cumulative glucose disposal from cumulative in vitro GGE release, accuracy in predicting the in vivo glycaemic effect from in vitro GGE values was greatly improved. GGEin vivo = 0·99GGEin vitro+0·75 (R2 0·88). Furthermore, the difference between the curves of cumulative GGE release and disposal closely mimicked in vivo incremental BGR curves. We conclude that valid measurement of the glycaemic impact of foods may be obtained in vitro, and expressed as grams of glucose equivalents per food quantity, by taking account not only of GGE release from food during in vitro digestion, but also of blood glucose clearance in response to the food quantity.


Sign in / Sign up

Export Citation Format

Share Document