scholarly journals Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase

2020 ◽  
Vol 117 (21) ◽  
pp. 11257-11264 ◽  
Author(s):  
Wei-Hsuan Lan ◽  
Sheng-Yao Lin ◽  
Chih-Yuan Kao ◽  
Wen-Hsuan Chang ◽  
Hsin-Yi Yeh ◽  
...  

Dmc1 recombinases are essential to homologous recombination in meiosis. Here, we studied the kinetics of the nucleoprotein filament assembly ofSaccharomyces cerevisiaeDmc1 using single-molecule tethered particle motion experiments and in vitro biochemical assay. ScDmc1 nucleoprotein filaments are less stable than the ScRad51 ones because of the kinetically much reduced nucleation step. The lower nucleation rate of ScDmc1 results from its lower single-stranded DNA (ssDNA) affinity, compared to that of ScRad51. Surprisingly, ScDmc1 nucleates mostly on the DNA structure containing the single-stranded and duplex DNA junction with the allowed extension in the 5′-to-3′ polarity, while ScRad51 nucleation depends strongly on ssDNA lengths. This nucleation preference is also conserved for mammalian RAD51 and DMC1. In addition, ScDmc1 nucleation can be stimulated by short ScRad51 patches, but not by EcRecA ones. Pull-down experiments also confirm the physical interactions of ScDmc1 with ScRad51 in solution, but not with EcRecA. Our results are consistent with a model that Dmc1 nucleation can be facilitated by a structural component (such as DNA junction and protein–protein interaction) and DNA polarity. They provide direct evidence of how Rad51 is required for meiotic recombination and highlight a regulation strategy in Dmc1 nucleoprotein filament assembly.

Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Laura Salem ◽  
Natalie Walter ◽  
Robert Malone

Abstract REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for highcopy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not “bypass” suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.


2018 ◽  
Vol 115 (33) ◽  
pp. 8346-8351 ◽  
Author(s):  
Xiang Li ◽  
Yu Jiang ◽  
Shaorong Chong ◽  
David R. Walt

In this paper, we report an example of the engineered expression of tetrameric β-galactosidase (β-gal) containing varying numbers of active monomers. Specifically, by combining wild-type and single-nucleotide polymorphism plasmids at varying ratios, tetrameric β-gal was expressed in vitro with one to four active monomers. The kinetics of individual enzyme molecules revealed four distinct populations, corresponding to the number of active monomers in the enzyme. Using single-molecule-level enzyme kinetics, we were able to measure an accurate in vitro mistranslation frequency (5.8 × 10−4 per base). In addition, we studied the kinetics of the mistranslated β-gal at the single-molecule level.


2019 ◽  
Vol 30 (12) ◽  
pp. 1369-1376 ◽  
Author(s):  
Tim N. Baldering ◽  
Marina S. Dietz ◽  
Karl Gatterdam ◽  
Christos Karathanasis ◽  
Ralph Wieneke ◽  
...  

How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.


2009 ◽  
Vol 55 (3) ◽  
pp. 288-303 ◽  
Author(s):  
William E. Courchesne ◽  
Meral Tunc ◽  
Sha Liao

We used a proteomic approach to study effects of amiodarone on cells of the yeast Saccharomyces cerevisiae. Amiodarone has been shown to have antifungal activity in vitro and causes a massive increase in cytoplasmic calcium levels ([Ca2+]cyt). Proteomic analysis of cells exposed to amiodarone show that this drug elicits stress responses and points to involvement of proteins associated with the cell wall. We tested several of those proteins for involvement in the Ca2+ flux. In particular, the amiodarone-induced Ca2+ flux was decreased in bgl2Δ cells, which have altered levels of β-glucan and chitin. The involvement of the cell wall in the Ca2+ flux induced by amiodarone treatment was tested by addition of yeast cell-wall components. While mannan inhibited the rise in [Ca2+]cyt, β-glucan potentiated the Ca2+ flux by 4.5-fold, providing evidence that the cell wall is directly involved in controlling this Ca2+ flux. This conclusion is corroborated by the inhibition of the Ca2+ flux by calcofluor, which is known to bind to cell-wall chitin and inhibit cell growth. Zymolyase treatment altered the kinetics of amiodarone-induced calcium flux and uncoupled the inhibitory effect of calcofluor. These effects demonstrate that the cell-wall β-glucan regulates calcium flux elicited by amiodarone.


2006 ◽  
Vol 175 (6) ◽  
pp. 947-955 ◽  
Author(s):  
Takushi Miyoshi ◽  
Takahiro Tsuji ◽  
Chiharu Higashida ◽  
Maud Hertzog ◽  
Akiko Fujita ◽  
...  

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s−1, respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


2020 ◽  
Vol 295 (27) ◽  
pp. 8958-8971 ◽  
Author(s):  
Katarina Jurikova ◽  
Martin Gajarsky ◽  
Mona Hajikazemi ◽  
Jozef Nosek ◽  
Katarina Prochazkova ◽  
...  

The ends of eukaryotic chromosomes typically contain a 3′ ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing–based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.


2006 ◽  
Vol 27 (1) ◽  
pp. 297-311 ◽  
Author(s):  
Krassimira A. Garbett ◽  
Manish K. Tripathi ◽  
Belgin Cencki ◽  
Justin H. Layer ◽  
P. Anthony Weil

ABSTRACT In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UASRAP1 enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UASRAP1 enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.


Genetics ◽  
1995 ◽  
Vol 139 (2) ◽  
pp. 495-509 ◽  
Author(s):  
D X Tishkoff ◽  
B Rockmill ◽  
G S Roeder ◽  
R D Kolodner

Abstract Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae promotes homologous pairing of DNA in vitro and sep1 mutants display pleiotropic phenotypes in both vegetative and meiotic cells. In this study, we examined in detail the ability of the sep1 mutant to progress through meiosis I prophase and to undergo meiotic recombination. In meiotic return-to-growth experiments, commitment to meiotic recombination began at the same time in wild type and mutant; however, recombinants accumulated at decreased rates in the mutant. Gene conversion eventually reached nearly wild-type levels, whereas crossing over reached 15-50% of wild type. In an assay of intrachromosomal pop-out recombination, the sep1, dmc1 and rad51 single mutations had only small effects; however, pop-out recombination was virtually eliminated in the sep1 dmc1 and sep1 rad51 double mutants, providing evidence for multiple recombination pathways. Analysis of meiotic recombination intermediates indicates that the sep1 mutant is deficient in meiotic double-strand break repair. In a physical assay, the formation of mature reciprocal recombinants in the sep1 mutant was delayed relative to wild type and ultimately reached only 50% of the wild-type level. Electron microscopic analysis of meiotic nuclear spreads indicates that the sep1 delta mutant arrests in pachytene, with apparently normal synaptonemal complex. This arrest is RAD9-independent. We hypothesize that the Sep1 protein participates directly in meiotic recombination and that other strand exchange enzymes, acting in parallel recombination pathways, are able to substitute partially for the absence of the Sep1 protein.


2013 ◽  
Vol 24 (12) ◽  
pp. 1918-1932 ◽  
Author(s):  
Laura K. Baker ◽  
David C. Gillis ◽  
Sarika Sharma ◽  
Andy Ambrus ◽  
Harald Herrmann ◽  
...  

Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.


Sign in / Sign up

Export Citation Format

Share Document