scholarly journals Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM

2019 ◽  
Vol 30 (12) ◽  
pp. 1369-1376 ◽  
Author(s):  
Tim N. Baldering ◽  
Marina S. Dietz ◽  
Karl Gatterdam ◽  
Christos Karathanasis ◽  
Ralph Wieneke ◽  
...  

How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.

1998 ◽  
Vol 9 (7) ◽  
pp. 1661-1674 ◽  
Author(s):  
Theodore T. Wu ◽  
J. David Castle

Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.


1990 ◽  
Vol 259 (3) ◽  
pp. G443-G452 ◽  
Author(s):  
L. C. Read ◽  
A. P. Lord ◽  
V. Brantl ◽  
G. Koch

beta-Casomorphins (beta-CMs) derived from milk beta-casein may exert various opiate activities in milk-fed infants. To assess the physiological significance of beta-CMs as a source of circulating opioids in infants, we measured absorption rates of several beta-CMs under near-physiological conditions using in situ autoperfused lamb intestine. The naturally occurring beta-CMs, beta-CM-7 and beta-CM-4-amide, were absorbed readily into blood with no transfer into lymph. Uptake peaked within several minutes of the luminal infusion of peptide but then declined sharply and stopped within a further 10-15 min. The recovery in blood, intestinal contents, and tissue at the end of the 30-min experiment was less than 1% of the infused dose. The low recovery was due to rapid proteolysis based on in vitro studies that demonstrated half-lives of less than 5 min in lamb blood, luminal contents, and lymph. The synthetic dipeptidyl peptidase IV-resistant analogue beta-[D-Ala2]CM- 4-amide was stable during incubation in blood, lymph, or luminal contents and was absorbed into blood at rates that were maximal within several minutes and remained steady for the 30-min period. We conclude that although natural beta-CMs are transferred across the lamb small intestine, rapid degradation within the intestinal lumen, gut epithelium, and blood would prevent entry into the circulation under normal conditions. Val-beta-CM-7, a putative stable precursor, had similar stability and kinetics of absorption to beta-CM-7, results that exclude Val-beta-CM-7 as a stable precursor for delivery of beta-CMs to the circulation. Essentially identical results to those in lambs were obtained in 7-day-old piglets.


2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


Parasitology ◽  
1995 ◽  
Vol 111 (3) ◽  
pp. 275-287 ◽  
Author(s):  
E. M. B. Saraiva ◽  
P. F. P. Pimenta ◽  
T. N. Brodin ◽  
E. Rowton ◽  
G. B. Modi ◽  
...  

SUMMARYStage-specific molecular and morphogenic markers were used to follow the kinetics of appearance, number, and position of metacyclic promastigotes developing during the course ofL. majorinfection in a natural vector,Phlebotomus papatasi. Expression of surface lipophosphoglycan (LPG) on transformed promastigotes was delayed until the appearance of nectomonad forms on day 3, and continued to be abundantly expressed by all promastigotes thereafter. An epitope associate with arabinose substitution of LPG side-chain oligosaccharides, identified by its differential expression by metacyclics invitro, was detected on the surface of a low proportion of midgut promastigotes beginning on day 5, and on up to 60% of promatigotes on days 10 and 15. In contrast 100% of the parasites egested from the mouthparts during forced feeding of 15 day infected flies stained strongly for this epitope. At each time-point, the surface expression of the modified LPG was restricted to morphologically distinguished metacyclic forms. Ultrastructural study of the metacyclic surface revealed an approximate 2-fold increase in the thickness of the surface coat compared to nectomonad forms, suggesting elongation of LPG as occurs during metacyclogenesisin vitro. A metacyclic-associated transcript (MAT-1), another marker identified by its differential expression invitro, also showed selective expression by promastigotes in the fly, and was used inin situhybridization studies to demonstrate the positioning of metacyclics in the anterior gut.


2021 ◽  
Author(s):  
◽  
Matthew Rowe

<p>Over the past decade and a half, evidence for transfer of whole mitochondria between mammalian cells has emerged in the literature. The notion that mitochondria are restricted to the cell of origin has been overturned by this curious phenomenon, yet the physiological relevance of these transfer events remains unclear.   This thesis investigates intercellular mitochondrial transfer in co-cultures of neural cells in vitro, to understand whether neural cells placed under stress demonstrate an enhanced rate of intercellular mitochondrial transfer. This would implicate the phenomenon as a cellular response to stress.   Reliable techniques for quantitative study of intercellular mitochondrial transfer are limited so far in this field. To address this, a novel quantitative approach was developed to detect intercellular mitochondrial transfer, based on single molecule genotyping by target-primed rolling circle amplification. This enabled imaging of individual mitochondrial DNA molecules in situ, to detect those molecules which had moved between cells. Through this strategy, intercellular mitochondrial transfer was detected in new in vitro co-culture models.   Primary murine pericytes derived from brain microvessels, were found to readily transfer mitochondria to a murine astrocyte cell line in vitro. Cisplatin, a DNA damaging agent; and chloramphenicol, a mitochondrial ribosome inhibitor, used to induce acute cellular injuries in the murine astrocyte cell line. These injuries were characterised and found to induce apoptosis, cause changes in growth characteristics, mitochondrial gene expression, and alter the metabolic phenotype of the cells. A derivative of the astrocyte cell line which completely lacks mitochondrial respiration, was found to model a chronic metabolic injury.  As pericytes are prevalent throughout the brain, the pericyte/astrocyte co-culture model was selected to evaluate how the rate of intercellular mitochondrial transfer was altered, when the astrocytes were injured prior to co-culture. Through in situ single molecule genotyping and high throughput confocal microscopy, quantitative data was produced on how the rate of intercellular mitochondrial transfer was altered by injury in these models. The rate of intercellular mitochondrial transfer remained unaltered by chloramphenicol, however both cisplatin and the chronic metabolic injury model demonstrated reduced numbers of pericyte mitochondrial DNAs transferred into the injured astrocytes.   These studies demonstrate successful application of a novel approach to study intercellular mitochondrial transfer and enable quantitative studies of this phenomenon.</p>


2018 ◽  
Vol 115 (33) ◽  
pp. 8346-8351 ◽  
Author(s):  
Xiang Li ◽  
Yu Jiang ◽  
Shaorong Chong ◽  
David R. Walt

In this paper, we report an example of the engineered expression of tetrameric β-galactosidase (β-gal) containing varying numbers of active monomers. Specifically, by combining wild-type and single-nucleotide polymorphism plasmids at varying ratios, tetrameric β-gal was expressed in vitro with one to four active monomers. The kinetics of individual enzyme molecules revealed four distinct populations, corresponding to the number of active monomers in the enzyme. Using single-molecule-level enzyme kinetics, we were able to measure an accurate in vitro mistranslation frequency (5.8 × 10−4 per base). In addition, we studied the kinetics of the mistranslated β-gal at the single-molecule level.


1997 ◽  
Vol 65 (1) ◽  
pp. 121-128 ◽  
Author(s):  
M. J. Ranilla ◽  
M. D. Carro ◽  
C. Valdés ◽  
F. J. Giráldez ◽  
S. López

AbstractA study was carried out to compare the fermentation parameters and kinetics of digestion of a range of different foods in the rumen of two breeds of sheep (Churra and Merino). Ten mature sheep (five Churra and five Merino), each fitted with a rumen cannula, were used in this study. In situ rumen degradability of both dry matter (DM) and cell wall was greater in Churra than in Merino sheep, the breed differences being significant for most of the foods used in the study (P < 0·05). These differences were greater when the foods had a higher cell wall concentration and this could be related to differences in the ruminal environment. However, when the foods were incubated with rumen fluid their in vitro organic matter (OM) degradability was similar in both breeds. Rumen pH was higher (P < 0·05) and ammonia concentrations were lower (P < 0·05) in Churra than in Merino sheep. Rumen volatile fatty acid concentrations tended to be higher in Merino than in Churra sheep, though differences were only significant just before feeding (P < 0·05). The ratio acetate: propionate was higher in the Churra than Merino breed before and 12 h after feeding (P < 0·05). Protozoa numbers in rumen liquid were similar for both genotypes. The greater degradation of forages in the rumen of Churra sheep is discussed in relation to the possible higher activity of fibre-degrading micro-organisms and the greater buffering capacity of the rumen contents against fermentation acids, which could result in more favourable conditions for the microbial degradation of foods in the rumen.


Holzforschung ◽  
2020 ◽  
Vol 74 (8) ◽  
pp. 725-732
Author(s):  
Shintaro Matsuo ◽  
Satomi Tagawa ◽  
Yudai Matsusaki ◽  
Yuri Uchi ◽  
Tetsuo Kondo

AbstractPreviously, it was reported that plant protoplasts isolated from Betula platyphylla (white birch) callus secreted bundles of hollow callose fibrils in acidic culture medium containing a high concentration of calcium ions (Ca2+). Here, the callose synthase was characterized from in situ and in vitro perspectives. Localization of callose synthases at the secreting site of callose fiber was indicated from in situ immunostaining observation of protoplasts. For in vitro analyses, membrane proteins were extracted from membrane fraction of protoplasts with a 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) treatment. The CHAPS extract aggregated in the presence of a high concentration of Ca2+, suggesting that Ca2+ may promote the arrangement of callose synthases in the plasma membrane. The callose synthase activity was dependent on pH and Ca2+, similar to the callose synthase of Arabidopsis thaliana. However, the synthesized fibril products were longer than those produced by callose synthases of herbaceous plants. This is the first insight into the specific properties of callose synthases of woody plants that secrete of callose hollow fibers.


Sign in / Sign up

Export Citation Format

Share Document