scholarly journals Warming enabled upslope advance in western US forest fires

2021 ◽  
Vol 118 (22) ◽  
pp. e2009717118
Author(s):  
Mohammad Reza Alizadeh ◽  
John T. Abatzoglou ◽  
Charles H. Luce ◽  
Jan F. Adamowski ◽  
Arvin Farid ◽  
...  

Increases in burned area and large fire occurrence are widely documented over the western United States over the past half century. Here, we focus on the elevational distribution of forest fires in mountainous ecoregions of the western United States and show the largest increase rates in burned area above 2,500 m during 1984 to 2017. Furthermore, we show that high-elevation fires advanced upslope with a median cumulative change of 252 m (−107 to 656 m; 95% CI) in 34 y across studied ecoregions. We also document a strong interannual relationship between high-elevation fires and warm season vapor pressure deficit (VPD). The upslope advance of fires is consistent with observed warming reflected by a median upslope drift of VPD isolines of 295 m (59 to 704 m; 95% CI) during 1984 to 2017. These findings allow us to estimate that recent climate trends reduced the high-elevation flammability barrier and enabled fires in an additional 11% of western forests. Limited influences of fire management practices and longer fire-return intervals in these montane mesic systems suggest these changes are largely a byproduct of climate warming. Further weakening in the high-elevation flammability barrier with continued warming has the potential to transform montane fire regimes with numerous implications for ecosystems and watersheds.

2018 ◽  
Vol 219 ◽  
pp. 271-283 ◽  
Author(s):  
Shawn Urbanski ◽  
Bryce Nordgren ◽  
Carl Albury ◽  
Brenna Schwert ◽  
David Peterson ◽  
...  

2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


1969 ◽  
Vol 50 (7) ◽  
pp. 514-521 ◽  
Author(s):  
C. D. Stow

The destructive nature of cloud-to-ground lightning strokes is well known. Loss of life and damage to buildings and other man-made structures may to a large extent be prevented by the judicial use of lightning conductors and screens but no comparable protection may be offered to expanses of agricultural crops or forests. According to Fuquay (1967) lightning is the greatest single cause of forest fires in the western United States: during the period 1946–1962, 140,000 such fires occurred causing severe losses of timber, wildlife, watershed, and recreational resources. Comparable losses occur regularly in other parts of the world. The only solution is the suppression or modification of cloud-to-ground lightning discharges. Methods of suppression are described, some of which may turn out to be practical ways of achieving this aim.


2011 ◽  
Vol 11 (24) ◽  
pp. 12973-13000 ◽  
Author(s):  
S. P. Urbanski ◽  
W. M. Hao ◽  
B. Nordgren

Abstract. Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite remote sensing technology for fire detection and burned area mapping. However, agreement among biomass burning emission inventories is frequently poor. Furthermore, the uncertainties of the emission estimates are typically not well characterized, particularly at the spatio-temporal scales pertinent to regional air quality modeling. We present the Wildland Fire Emission Inventory (WFEI), a high resolution model for non-agricultural open biomass burning (hereafter referred to as wildland fires, WF) in the contiguous United States (CONUS). The model combines observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua satellites, meteorological analyses, fuel loading maps, an emission factor database, and fuel condition and fuel consumption models to estimate emissions from WF. WFEI was used to estimate emissions of CO (ECO) and PM2.5 (EPM2.5) for the western United States from 2003–2008. The uncertainties in the inventory estimates of ECO and EPM2.5 (uECO and uEPM2.5, respectively) have been explored across spatial and temporal scales relevant to regional and global modeling applications. In order to evaluate the uncertainty in our emission estimates across multiple scales we used a figure of merit, the half mass uncertainty, ũEX (where X = CO or PM2.5), defined such that for a given aggregation level 50% of total emissions occurred from elements with uEX ũEX. The sensitivity of the WFEI estimates of ECO and EPM2.5 to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors have also been examined. The estimated annual, domain wide ECO ranged from 436 Gg yr−1 in 2004 to 3107 Gg yr−1 in 2007. The extremes in estimated annual, domain wide EPM2.5 were 65 Gg yr−1 in 2004 and 454 Gg yr−1 in 2007. Annual WF emissions were a significant share of total emissions from non-WF sources (agriculture, dust, non-WF fire, fuel combustion, industrial processes, transportation, solvent, and miscellaneous) in the western United States as estimated in a national emission inventory. In the peak fire year of 2007, WF emissions were ~20% of total (WF + non-WF) CO emissions and ~39% of total PM2.5 emissions. During the months with the greatest fire activity, WF accounted for the majority of total CO and PM2.5 emitted across the study region. Uncertainties in annual, domain wide emissions was 28% to 51% for CO and 40% to 65% for PM2.5. Sensitivity of ũECO and ũEPM2.5 to the emission model components depended on scale. At scales relevant to regional modeling applications (Δx = 10 km, Δt = 1 day) WFEI estimates 50% of total ECO with an uncertainty <133% and half of total EPM2.5 with an uncertainty <146%. ũECO and ũEPM2.5 are reduced by more than half at the scale of global modeling applications (Δ x = 100 km, Δ t = 30 day) where 50% of total emissions are estimated with an uncertainty <50% for CO and <64% for PM2.5. Uncertainties in the estimates of burned area drives the emission uncertainties at regional scales. At global scales ũECO is most sensitive to uncertainties in the fuel load consumed while the uncertainty in the emission factor for PM2.5 plays the dominant role in ũEPM2.5. Our analysis indicates that the large scale aggregate uncertainties (e.g. the uncertainty in annual CO emitted for CONUS) typically reported for biomass burning emission inventories may not be appropriate for evaluating and interpreting results of regional scale modeling applications that employ the emission estimates. When feasible, biomass burning emission inventories should be evaluated and reported across the scales for which they are intended to be used.


2005 ◽  
Vol 20 (5) ◽  
pp. 812-821 ◽  
Author(s):  
William Y. Y. Cheng ◽  
W. James Steenburgh

Abstract An evaluation of the surface sensible weather forecasts using high-density observations provided by the MesoWest cooperative networks illustrates the performance characteristics of the Cooperative Institute for Regional Prediction (CIRP) Weather Research and Forecast (WRF) and the Eta Models over the western United States during the 2003 warm season (June–August). In general, CIRP WRF produced larger 2-m temperature and dewpoint mean absolute and bias errors (MAEs and BEs, respectively) than the Eta. CIRP WRF overpredicted the 10-m wind speed, whereas the Eta exhibited an underprediction with a comparable error magnitude to CIRP WRF. Tests using the Oregon State University (OSU) Land Surface Model (LSM) in CIRP WRF, instead of a simpler slab-soil model, suggest that using a more sophisticated LSM offers no overall advantage in reducing WRF BEs and MAEs for the aforementioned surface variables. Improvements in the initialization of soil temperature in the slab-soil model, however, did reduce the temperature bias in CIRP WRF. These results suggest that improvements in LSM initialization may be as or more important than improvements in LSM physics. A concerted effort must be undertaken to improve both the LSM initialization and parameterization of coupled land surface–boundary layer processes to produce more accurate surface sensible weather forecasts.


2015 ◽  
Vol 9 (3) ◽  
pp. 1229-1247 ◽  
Author(s):  
F. Salerno ◽  
N. Guyennon ◽  
S. Thakuri ◽  
G. Viviano ◽  
E. Romano ◽  
...  

Abstract. Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation (> 5000 m a.s.l.). This study specifically explores the southern slopes of Mt. Everest, analyzing the time series of temperature and precipitation reconstructed from seven stations located between 2660 and 5600 m a.s.l. during 1994–2013, complemented with the data from all existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we find that the main and most significant increase in temperature is concentrated outside of the monsoon period. Above 5000 m a.s.l. the increasing trend in the time series of minimum temperature (+0.072 °C yr−1) is much stronger than of maximum temperature (+0.009 °C yr−1), while the mean temperature increased by +0.044 °C yr−1. Moreover, we note a substantial liquid precipitation weakening (−9.3 mm yr−1) during the monsoon season. The annual rate of decrease in precipitation at higher elevations is similar to the one at lower elevations on the southern side of the Koshi Basin, but the drier conditions of this remote environment make the fractional loss much more consistent (−47% during the monsoon period). Our results challenge the assumptions on whether temperature or precipitation is the main driver of recent glacier mass changes in the region. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to a decrease in accumulation (snowfall) than to an increase in surface melting; (2) the melting has only been favoured during winter and spring months and close to the glaciers terminus; (3) a decrease in the probability of snowfall (−10%) has made a significant impact only at glacier ablation zone, but the magnitude of this decrease is distinctly lower than the observed decrease in precipitation; (4) the decrease in accumulation could have caused the observed decrease in glacier flow velocity and the current stagnation of glacier termini, which in turn could have produced more melting under the debris glacier cover, leading to the formation of numerous supraglacial and proglacial lakes that have characterized the region in the last decades.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Zachary L. Steel ◽  
Brandon M. Collins ◽  
David B. Sapsis ◽  
Scott L. Stephens

Pyrodiversity or variation in spatio-temporal fire patterns is increasingly recognized as an important determinant of ecological pattern and process, yet no consensus surrounds how best to quantify the phenomenon and its drivers remain largely untested. We present a generalizable functional diversity approach for measuring pyrodiversity, which incorporates multiple fire regime traits and can be applied across scales. Further, we tested the socioecological drivers of pyrodiversity among forests of the western United States. Largely mediated by burn activity, pyrodiversity was positively associated with actual evapotranspiration, climate water deficit, wilderness designation, elevation and topographic roughness but negatively with human population density. These results indicate pyrodiversity is highest in productive areas with pronounced annual dry periods and minimal fire suppression. This work can facilitate future pyrodiversity studies including whether and how it begets biodiversity among taxa, regions and fire regimes.


2014 ◽  
Vol 8 (6) ◽  
pp. 5911-5959 ◽  
Author(s):  
F. Salerno ◽  
N. Guyennon ◽  
S. Thakuri ◽  
G. Viviano ◽  
E. Romano ◽  
...  

Abstract. Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation. This contribution specifically explores the southern slopes of Mt. Everest (central Himalaya), analyzing the minimum, maximum, and mean temperature and precipitation time series reconstructed from seven stations located between 2660 and 5600m a.s.l. over the last twenty years (1994–2013). We complete this analysis with data from all the existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we observe that the main and more significant increase in temperature is concentrated outside of the monsoon period. At higher elevations minimum temperature (0.072 ± 0.011 °C a−1, p < 0.001) increased far more than maximum temperature (0.009 ± 0.012 °C a−1, p > 0.1), while mean temperature increased by 0.044 ± 0.008 °C a−1, p < 0.05. Moreover, we note a substantial precipitation weakening (9.3 ± 1.8mm a−1, p < 0.01 during the monsoon season). The annual rate of decrease at higher elevation is similar to the one at lower altitudes on the southern side of the Koshi Basin, but here the drier conditions of this remote environment make the fractional loss much more consistent (47% during the monsoon period). This study contributes to change the perspective on which climatic driver (temperature vs. precipitation) led mainly the glacier responses in the last twenty years. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to less accumulation due to weaker precipitation than to an increase of melting processes. (2) The melting processes have only been favored during winter and spring months and close to the glaciers terminus. (3) A decreasing of the probability of snowfall has significantly interested only the glaciers ablation zones (10%, p < 0.05), but the magnitude of this phenomenon is decidedly lower than the observed decrease of precipitation. (4) The lesser accumulation could be the cause behind the observed lower glacier flow velocity and the current stagnation condition of tongues, which in turn could have trigged melting processes under the debris glacier coverage, leading to the formation of numerous supraglacial and proglacial lakes that have characterized the region in the last decades. Without demonstrating the causes that could have led to the climate change pattern observed at high elevation, we conclude by listing the recent literature on hypotheses that accord with our observations.


Sign in / Sign up

Export Citation Format

Share Document