scholarly journals HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings

2020 ◽  
Vol 117 (35) ◽  
pp. 21058-21064
Author(s):  
Marissa N. Lavagnino ◽  
Tao Liang ◽  
David W. C. MacMillan

The copper-catalyzed arylation of unsaturated nitrogen heterocycles, known as the Ullmann–Goldberg coupling, is a valuable transformation for medicinal chemists, providing a modular disconnection for the rapid diversification of heteroaromatic cores. The utility of the coupling, however, has established limitations arising from a high-barrier copper oxidative addition step, which often necessitates the use of electron-rich ligands, elevated temperatures, and/or activated aryl electrophiles. Herein, we present an alternative aryl halide activation strategy, in which the critical oxidative addition (OA) mechanism has been replaced by a halogen abstraction–radical capture (HARC) sequence that allows the generation of the same Cu(III)-aryl intermediate albeit via a photoredox pathway. This alternative mechanistic paradigm decouples the bond-breaking and bond-forming steps of the catalytic cycle to enable the use of many previously inert aryl bromides. Overall, this mechanism allows access to both traditional C–N adducts at room temperature as well as a large range of previously inaccessible Ullmann–Goldberg coupling products including sterically demandingortho-substituted heteroarenes.

Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Science ◽  
2018 ◽  
Vol 360 (6392) ◽  
pp. 1010-1014 ◽  
Author(s):  
Chip Le ◽  
Tiffany Q. Chen ◽  
Tao Liang ◽  
Patricia Zhang ◽  
David W. C. MacMillan

Transition metal–catalyzed arene functionalization has been widely used for molecular synthesis over the past century. In this arena, copper catalysis has long been considered a privileged platform due to the propensity of high-valent copper to undergo reductive elimination with a wide variety of coupling fragments. However, the sluggish nature of oxidative addition has limited copper’s capacity to broadly facilitate haloarene coupling protocols. Here, we demonstrate that this copper oxidative addition problem can be overcome with an aryl radical–capture mechanism, wherein the aryl radical is generated through a silyl radical halogen abstraction. This strategy was applied to a general trifluoromethylation of aryl bromides through dual copper-photoredox catalysis. Mechanistic studies support the formation of an open-shell aryl species.


2022 ◽  
Author(s):  
Aslam C. Shaikh ◽  
Md Mubarak Hossain ◽  
Ramandeep Kaur ◽  
Jules Moutet ◽  
Anshu Kumar ◽  
...  

Direct activation of strong bonds in readily available, benchtop substrates offer a straightforward simplification, albeit in most cases existing catalytic systems are limited to unlock such activation. In recent years, a surge of in-situ generated organic radicals that can act as potent photoinduced electron transfer (PET) agents have proved to be a powerful manifold for the activation of remarkably stable bonds. Herein we document the use of N,N′-di-n-propyl-1,13-dimethoxyquinacridine (nPr-DMQA•), an isolated and stable neutral helicene radical, as a highly photoreducing species. This isolable doublet state open shell radical offers a unique opportunity to shed light on the mechanism behind PET reactions of organic radicals. Experimental and spectroscopic studies revealed that this doublet radical has a long lifetime of 4.6 ± 0.2 ns, an estimated excited state oxidation potential of -3.31 V vs SCE, and can undergoes PET with organic substrates. The strongly photoreducing nature of the nPr-DMQA• was experimentally confirmed by the demonstration of photo activation of electron rich aryl bromides and chlorides. We further demonstrated that nPr-DMQA• can be photochemically generated from its cation analog (nPr-DMQA+) allowing catalytic functionalization of aryl halide via a consecutive photoexcitation mechanism (ConPET). Dehalogenation, photo-Arbuzov, photo-borylation and C-C bond formation reactions with aryl chlorides and bromides are reported herein, as well as the α-arylation of carbonyl using cyclic ketones. The latter transformation exhibits the facile synthesis of α-arylated cyclic ketones as critical feedstock chemical for diverse useful molecules, especially in the biomedical enterprises.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


Author(s):  
Autumn Flynn ◽  
Kelly McDaniel ◽  
Meredith Hughes ◽  
David Vogt ◽  
Nathan Jui

A photocatalytic system for the dearomative hydroarylation of benzene derivatives has been developed. Using a combination of an organic photoredox catalyst and an amine reductant, this process operates through a reductive radical-polar crossover mechanism where aryl halide reduction triggers a regioselective cyclization event, giving rise to a range of complex spirocyclic cyclohexadienes. This light-driven protocol functions at room temperature in a green solvent system (aq. MeCN), without the need for precious metal-based catalysts or reagents, or the generation of stoichiometric metal byproducts.


Alloy Digest ◽  
1981 ◽  
Vol 30 (6) ◽  

Abstract FANSTEEL 85 METAL is a columbium-base alloy characterized by good fabricability at room temperature, good weldability and a good combination of creep strength and oxidation resistance at elevated temperatures. Its applications include missile and rocket components and many other high-temperature parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and bend strength as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-7. Producer or source: Fansteel Metallurgical Corporation. Originally published December 1963, revised June 1981.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2020 ◽  
Vol 23 (28) ◽  
pp. 3206-3225 ◽  
Author(s):  
Amol D. Sonawane ◽  
Mamoru Koketsu

: Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


Sign in / Sign up

Export Citation Format

Share Document