scholarly journals The evolution of altruism and the serial rediscovery of the role of relatedness

2020 ◽  
Vol 117 (46) ◽  
pp. 28894-28898
Author(s):  
Tomas Kay ◽  
Laurent Keller ◽  
Laurent Lehmann

The genetic evolution of altruism (i.e., a behavior resulting in a net reduction of the survival and/or reproduction of an actor to benefit a recipient) once perplexed biologists because it seemed paradoxical in a Darwinian world. More than half a century ago, W. D. Hamilton explained that when interacting individuals are genetically related, alleles for altruism can be favored by selection because they are carried by individuals more likely to interact with other individuals carrying the alleles for altruism than random individuals in the population (“kin selection”). In recent decades, a substantial number of supposedly alternative pathways to altruism have been published, leading to controversies surrounding explanations for the evolution of altruism. Here, we systematically review the 200 most impactful papers published on the evolution of altruism and identify 43 evolutionary models in which altruism evolves and where the authors attribute the evolution of altruism to a pathway other than kin selection and/or deny the role of relatedness. An analysis of these models reveals that in every case the life cycle assumptions entail local reproduction and local interactions, thereby leading to interacting individuals being genetically related. Thus, contrary to the authors’ claims, Hamilton’s relatedness drives the evolution to altruism in their models. The fact that several decades of investigating the evolution to altruism have resulted in the systematic and unwitting rediscovery of the same mechanism is testament to the fundamental importance of positive relatedness between actor and recipient for explaining the evolution of altruism.

2004 ◽  
Vol 27 (4) ◽  
pp. 570-571 ◽  
Author(s):  
Amotz Zahavi

I agree with Gurven that costly signaling can explain food-sharing phenomena. However, costly signaling may also explain the role of food sharing in deterring rivals. Details of food-sharing interactions may reveal gains and losses in the social prestige of the interacting parties. The evolutionary models of kin selection and of reciprocal altruism are unstable and should be avoided.


2005 ◽  
Vol 28 (4) ◽  
pp. 513-514
Author(s):  
chris westbury ◽  
geoff hollis

steels & belpaeme (s&b) describe the role of genetic evolution in linguistic category sharing among a population of agents. we consider their methodology and conclude that, although it is plausible that genetic evolution is sufficient for such tasks, there is a bias in the presented work for such a conclusion to be reached. we suggest ways to eliminate this bias and make the model more convincingly relevant to the cognitive sciences.


Author(s):  
Petar Halachev ◽  
Victoria Radeva ◽  
Albena Nikiforova ◽  
Miglena Veneva

This report is dedicated to the role of the web site as an important tool for presenting business on the Internet. Classification of site types has been made in terms of their application in the business and the types of structures in their construction. The Models of the Life Cycle for designing business websites are analyzed and are outlined their strengths and weaknesses. The stages in the design, construction, commissioning, and maintenance of a business website are distinguished and the activities and requirements of each stage are specified.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


2021 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Yanyan Xu ◽  
Guijun Liu ◽  
Caihong Dong

Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
You-Chul Jung ◽  
Mi-Ae Lee ◽  
Han-Shin Kim ◽  
Kyu-Ho Lee

AbstractBiofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.


Sign in / Sign up

Export Citation Format

Share Document