scholarly journals Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis

2021 ◽  
Vol 118 (20) ◽  
pp. e2023504118
Author(s):  
Boyang Qin ◽  
Chenyi Fei ◽  
Bruce Wang ◽  
Howard A. Stone ◽  
Ned S. Wingreen ◽  
...  

Bacterial cells can self-organize into structured communities at fluid–fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid–fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simone Cristina Picchi ◽  
Mariana de Souza e Silva ◽  
Luiz Leonardo Saldanha ◽  
Henrique Ferreira ◽  
Marco Aurélio Takita ◽  
...  

AbstractN-Acetylcysteine (NAC) is an antioxidant, anti-adhesive, and antimicrobial compound. Even though there is much information regarding the role of NAC as an antioxidant and anti-adhesive agent, little is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we investigated the metabolic responses triggered by NAC at neutral pH. As a model organism, we chose the Gram-negative plant pathogen Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker disease, due to the potential use of NAC as a sustainable molecule against phytopathogens dissemination in citrus cultivated areas. In presence of NAC, cell proliferation was affected after 4 h, but damages to the cell membrane were observed only after 24 h. Targeted metabolite profiling analysis using GC–MS/TOF unravelled that NAC seems to be metabolized by the cells affecting cysteine metabolism. Intriguingly, glutamine, a marker for nitrogen status, was not detected among the cells treated with NAC. The absence of glutamine was followed by a decrease in the levels of the majority of the proteinogenic amino acids, suggesting that the reduced availability of amino acids affect protein synthesis and consequently cell proliferation.


2020 ◽  
Author(s):  
Alona Keren-Paz ◽  
Malena Cohen-Cymberknoh ◽  
Dror Kolodkin-Gal ◽  
Iris Karunker ◽  
Simon Dersch ◽  
...  

AbstractBacterial biofilms produce a robust internal mineral layer, composed of calcite, which strengthens the colony and protects the residing bacteria from antibiotics. In this work, we provide evidence that the assembly of a functional mineralized macro-structure begins with mineral precipitation within a defined cellular compartment in a differentiated subpopulation of cells. Transcriptomic analysis of a model organism, Bacillus subtilis, revealed that calcium was essential for activation of the biofilm state, and highlighted the role of cellular metal homeostasis and carbon metabolism in biomineralization. The molecular mechanisms promoting calcite formation were conserved in pathogenic Pseudomonas aeruginosa biofilms, resulting in formation of calcite crystals tightly associated with bacterial cells in sputum samples collected from cystic fibrosis patients. Biomineralization inhibitors targeting calcium uptake and carbonate accumulation significantly reduced the damage inflicted by P. aeruginosa biofilms to lung tissues. Therefore, better understanding of the conserved molecular mechanisms promoting biofilm calcification can path the way to the development of novel classes of antibiotics to combat otherwise untreatable biofilm infections.


2020 ◽  
Author(s):  
Eric J.G. Pollitt ◽  
Oliver Carnell ◽  
Egbert Hoiczyk ◽  
Jeffrey Green

AbstractMycobacterium smegmatis spreads over soft agar surfaces by sliding motility, a form of passive motility in which growth and reduction of surface adhesion enable the bacteria to push each other outwards. Hence, sliding motility is mostly associated with round colonies. However, M. smegmatis sliding colonies can also produce long, pointed dendrites. Round sliding colonies were readily reproduced, but our non-round colonies were different from those seen previously. The latter (named digitate colonies) had centimetre-long linear protrusions, containing a central channel filled with a free-flowing suspension of M. smegmatis and solid aggregates. Digitate colonies had both a surface pellicle and an inner biofilm component surrounding a central channel, which sat in a cleft in the agar. Time-lapse microscopy showed that the expansion of the fluid-filled channel enabled the lengthwise extension of the protrusions without any perceptible growth of the bacteria taking place. These observations represent a novel type of sliding motility, named hydraulic sliding, associated with a specialised colony structure and the apparent generation of force by expansion of a liquid core. As this structure requires pellicle formation without an initial liquid culture it implies the presence of an unstudied mycobacterial behaviour that may be important for colonisation and virulence.Originality-Significance StatementThis study is the first to identify a new form of passive motility in the mycobacteria; hydraulic sliding, in which liquid expansion is the cause of motility. This form of motility has so far never been described in bacteria. The study also reveals new ways mycobacteria can form biofilms and colonize complex three-dimensional substrates, aspects of mycobacterial biology that are important for infection, pathogenesis and vaccine development.Author SummaryMycobacterium smegmatis is used as a non-pathogenic model organism for pathogenic mycobacteria. During growth, M. smegmatis can move passively over soft agar surfaces by a process called sliding motility, whereby colony growth directly pushes cells outwards. Although passive, sliding motility is believed to be important in allowing bacteria to colonise surfaces. Sliding motility however does not fully account for how M. smegmatis produces dendritic colonies. We attempted to generate dendritic colonies but found instead that the cells produced colonies that had larger protrusions radiating from them (digitate colonies). Digitate colonies are a previously unobserved phenomenon, in that the bacteria create a biofilm-lined, fluid-filled, pellicle-covered, deep cleft in the agar and move across the surface by the expansion of the contained liquid core of the protrusions. Given the new structure and the new mechanism of expansion we have termed this set of behaviours hydraulic sliding. These observations are important as it is a new variation in the way bacteria can move, generate biofilms (notably mycobacterial pellicle) and colonize complex three-dimensional substrates.


2000 ◽  
Vol 15 (6) ◽  
pp. 1417-1423 ◽  
Author(s):  
A. Y. Oral ◽  
M. L. Mecartney

Microstructural changes in sol-gel-derived SrxBa1−xNb2O6 (SBN) thin films were monitored as a function of Ba-to-Sr ratio (from x = 0 to x = 1), choice of substrate (Si or MgO), and processing variations. Sols were created using Ba, Sr, and Nb alkoxides dissolved in acetic acid. The relatively high decomposition temperature for the organics led to a tendency to form defects, but careful control of thermal process parameters could be used to produce a uniform film microstructure. An unexpected phase, interpreted as a hexagonal (pseudo-orthorhombic) variant of hexagonal BaNb2O6, was encountered in Ba-rich sol-gel-derived SBN powders and thin films annealed at 750 °C. Increased (001) orientation was observed for SBN thin films deposited on (100) MgO when fast thermal processing was used.


2007 ◽  
Vol 22 (2) ◽  
pp. 195-205 ◽  
Author(s):  
T. Otiti ◽  
Y. Cao ◽  
S. M. Allameh ◽  
Z. Zong ◽  
O. Akogwu ◽  
...  

1991 ◽  
Vol 239 ◽  
Author(s):  
Risto H. Mutikainen

ABSTRACTThe effect of deposition parameters on the properties of sputtered Be films has been studied. The parameters have been optimized to obtain stress free films. Nitrogen pulsing has been used to improve the film microstructure by suppressing the columnar grain growth.


Sign in / Sign up

Export Citation Format

Share Document