scholarly journals Symmetrical arrangement of proteins under release-ready vesicles in presynaptic terminals

2021 ◽  
Vol 118 (5) ◽  
pp. e2024029118
Author(s):  
Abhijith Radhakrishnan ◽  
Xia Li ◽  
Kirill Grushin ◽  
Shyam S. Krishnakumar ◽  
Jun Liu ◽  
...  

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially “tethered” to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the “primed” vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.

Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


2007 ◽  
Vol 97 (1) ◽  
pp. 948-950 ◽  
Author(s):  
Jane M. Sullivan

Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xin-Ming Luo ◽  
Jing Zhao ◽  
Wen-Yue Wu ◽  
Jie Fu ◽  
Zheng-Yu Li ◽  
...  

Abstract Background Status epilepticus (SE) is a life-threatening neurological disorder. The hippocampus, as an important area of the brain that regulates cognitive function, is usually damaged after SE, and cognitive deficits often result from hippocampal neurons lost after SE. Fyn, a non-receptor Src family of tyrosine kinases, is potentially associated with the onset of seizure. Saracatinib, a Fyn inhibitor, suppresses epileptogenesis and reduces epileptiform spikes. However, whether saracatinib inhibits cognitive deficits after SE is still unknown. Methods In the present study, a pilocarpine-induced SE mouse model was used to answer this question by using the Morris water maze and normal object recognition behavioral tests. Results We found that saracatinib inhibited the loss in cognitive function following SE. Furthermore, we found that the number of hippocampal neurons in the saracatinib treatment group was increased, when compared to the SE group. Conclusions These results showed that saracatinib can improve cognitive functions by reducing the loss of hippocampal neurons after SE, suggesting that Fyn dysfunction is involved in cognitive deficits after SE, and that the inhibition of Fyn is a possible treatment to improve cognitive function in SE patients.


2020 ◽  
Author(s):  
Wei Guo ◽  
Jie J. Zhang ◽  
Jonathan P. Newman ◽  
Matthew A. Wilson

AbstractLatent learning allows the brain the transform experiences into cognitive maps, a form of implicit memory, without reinforced training. Its mechanism is unclear. We tracked the internal states of the hippocampal neural ensembles and discovered that during latent learning of a spatial map, the state space evolved into a low-dimensional manifold that topologically resembled the physical environment. This process requires repeated experiences and sleep in-between. Further investigations revealed that a subset of hippocampal neurons, instead of rapidly forming place fields in a novel environment, remained weakly tuned but gradually developed correlated activity with other neurons. These ‘weakly spatial’ neurons bond activity of neurons with stronger spatial tuning, linking discrete place fields into a map that supports flexible navigation.


2020 ◽  
Vol 55 (4) ◽  
pp. 357-366
Author(s):  
Wenyang Jin ◽  
Mizhu Sun ◽  
Bingbing Yuan ◽  
Runzhi Wang ◽  
Hongtao Yan ◽  
...  

Abstract Aims Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury. Methods Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology. Results Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell. Conclusion Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.


2007 ◽  
Vol 204 (9) ◽  
pp. 2063-2074 ◽  
Author(s):  
Younghwa Kim ◽  
Ping Zhou ◽  
Liping Qian ◽  
Jen-Zen Chuang ◽  
Jessica Lee ◽  
...  

The innate immune system relies on evolutionally conserved Toll-like receptors (TLRs) to recognize diverse microbial molecular structures. Most TLRs depend on a family of adaptor proteins termed MyD88s to transduce their signals. Critical roles of MyD88-1–4 in host defense were demonstrated by defective immune responses in knockout mice. In contrast, the sites of expression and functions of vertebrate MyD88-5 have remained elusive. We show that MyD88-5 is distinct from other MyD88s in that MyD88-5 is preferentially expressed in neurons, colocalizes in part with mitochondria and JNK3, and regulates neuronal death. We prepared MyD88-5/GFP transgenic mice via a bacterial artificial chromosome to preserve its endogenous expression pattern. MyD88-5/GFP was detected chiefly in the brain, where it associated with punctate structures within neurons and copurified in part with mitochondria. In vitro, MyD88-5 coimmunoprecipitated with JNK3 and recruited JNK3 from cytosol to mitochondria. Hippocampal neurons from MyD88-5–deficient mice were protected from death after deprivation of oxygen and glucose. In contrast, MyD88-5–null macrophages behaved like wild-type cells in their response to microbial products. Thus, MyD88-5 appears unique among MyD88s in functioning to mediate stress-induced neuronal toxicity.


2004 ◽  
Vol 200 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Janine Zweigner ◽  
Suzanne Jackowski ◽  
Shannon H. Smith ◽  
Marie van der Merwe ◽  
Joerg R. Weber ◽  
...  

Streptococcus pneumoniae is the most common cause of bacterial meningitis of high mortality and morbidity. Neurological sequelae include paralysis, mental retardation, and learning disorders. In humans, neurons of the hippocampus undergo apoptosis as a result of meningitis. Phosphatidylcholine (PtdCho) is an essential component of mammalian cell membranes and PtdCho deficiency, either due to chemicals or altered nutrition, leads to apoptosis, especially in hippocampal neurons. We show that apoptosis of a variety of brain cells after pneumococcal infection arises from inhibition of PtdCho biosynthesis, the first such activity described for a bacterium. Apoptosis inhibitors did not prevent the bacterial-dependent inhibition of PtdCho biosynthesis. Supplementation with exogenous lyso-phosphatidylcholine prevents cell death and treatment of mice with cytidine diphosphocholine attenuates hippocampal damage during meningitis, even after the onset of infection. We conclude that bacterial inhibition of PtdCho biosynthesis activates an apoptotic cascade that is a causative event in pathogenesis and amenable to therapeutic intervention.


Physiology ◽  
2000 ◽  
Vol 15 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Jan Bures ◽  
André A. Fenton

Understanding of the neurophysiology of cognition is advancing through the study of how animals navigate and understand space. Manipulating various classes of spatial information and recording from hippocampal neurons provides a robust model for understanding how the brain stores and constructs the spatial memories that are critical for organizing daily experience.


2012 ◽  
Vol 107 (9) ◽  
pp. 2430-2441 ◽  
Author(s):  
Xiaoyu Peng ◽  
Thomas D. Parsons ◽  
Rita J. Balice-Gordon

We used synaptophysin-pHluorin expressed in hippocampal neurons to address how functional properties of terminals, namely, evoked release, total vesicle pool size, and release fraction, vary spatially across individual axon arbors. Consistent with previous reports, over short arbor distances (∼100 μm), evoked release was spatially heterogeneous when terminals contacted different postsynaptic dendrites or neurons. Regardless of the postsynaptic configuration, the evoked release and total vesicle pool size spatially covaried, suggesting that the fraction of synaptic vesicles available for release (release fraction) was similar over short distances. Evoked release and total vesicle pool size were highly correlated with the amount of NMDA receptors and PSD-95 in postsynaptic specialization. However, when individual axons were followed over longer distances (several hundred micrometers), a significant increase in evoked release was observed distally that was associated with an increased release fraction in distal terminals. The increase in distal release fraction can be accounted for by changes in individual vesicle release probability as well as readily releasable pool size. Our results suggest that for a single axon arbor, presynaptic strength indicated by evoked release over short distances is correlated with heterogeneity in total vesicle pool size, whereas over longer distances presynaptic strength is correlated with the spatial modulation of release fraction. Thus the mechanisms that determine synaptic strength differ depending on spatial scale.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sergio Davinelli ◽  
Nadia Sapere ◽  
Davide Zella ◽  
Renata Bracale ◽  
Mariano Intrieri ◽  
...  

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD.


Sign in / Sign up

Export Citation Format

Share Document