Emergent dual scaling of riverine biodiversity

2021 ◽  
Vol 118 (47) ◽  
pp. e2105574118
Author(s):  
Akira Terui ◽  
Seoghyun Kim ◽  
Christine L. Dolph ◽  
Taku Kadoya ◽  
Yusuke Miyazaki

A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species–area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem’s habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species’ traits, larger and more branched “complex” networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.

2007 ◽  
Vol 14 (4) ◽  
pp. 455-464 ◽  
Author(s):  
S. G. Abaimov ◽  
D. L. Turcotte ◽  
R. Shcherbakov ◽  
J. B. Rundle

Abstract. The sandpile, forest-fire and slider-block models are said to exhibit self-organized criticality. Associated natural phenomena include landslides, wildfires, and earthquakes. In all cases the frequency-size distributions are well approximated by power laws (fractals). Another important aspect of both the models and natural phenomena is the statistics of interval times. These statistics are particularly important for earthquakes. For earthquakes it is important to make a distinction between interoccurrence and recurrence times. Interoccurrence times are the interval times between earthquakes on all faults in a region whereas recurrence times are interval times between earthquakes on a single fault or fault segment. In many, but not all cases, interoccurrence time statistics are exponential (Poissonian) and the events occur randomly. However, the distribution of recurrence times are often Weibull to a good approximation. In this paper we study the interval statistics of slip events using a slider-block model. The behavior of this model is sensitive to the stiffness α of the system, α=kC/kL where kC is the spring constant of the connector springs and kL is the spring constant of the loader plate springs. For a soft system (small α) there are no system-wide events and interoccurrence time statistics of the larger events are Poissonian. For a stiff system (large α), system-wide events dominate the energy dissipation and the statistics of the recurrence times between these system-wide events satisfy the Weibull distribution to a good approximation. We argue that this applicability of the Weibull distribution is due to the power-law (scale invariant) behavior of the hazard function, i.e. the probability that the next event will occur at a time t0 after the last event has a power-law dependence on t0. The Weibull distribution is the only distribution that has a scale invariant hazard function. We further show that the onset of system-wide events is a well defined critical point. We find that the number of system-wide events NSWE satisfies the scaling relation NSWE ∝(α-αC)δ where αC is the critical value of the stiffness. The system-wide events represent a new phase for the slider-block system.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 203-220 ◽  
Author(s):  
Ricard V. Solé ◽  
David Alonso

Rainforests are legendary because their extreme species richness. In the richest rain forests every second tree on a hectare is a differnt species. As a consequence, most species are rare. Using field data from studies in dfiferent parts of the world, we show that species-rich plots often display a distribution of number of species Ns(I) represented by I individuals with a power-law shape Ns(I)∝I-β with β≈1.5. Power laws are characteristic (but not exclusive) of systems poised close to critical points and this is supported by the analysis of the gap distribution over space in the Barro Colorado Island forest, which has been shown to be fractal. Here we propose a new model of rainforest dynamics which is able to account for a wide set of observations, strongly suggesting that indeed rainforests would be organized close to instability points, showing strongly path-dependent dynamics.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Scaling appears practically everywhere in science; it basically quantifies how the properties or shapes of an object change with the scale of the object. Scaling laws are always associated with power laws. The scaling object can be a function, a structure, a physical law, or a distribution function that describes the statistics of a system or a temporal process. We focus on scaling laws that appear in the statistical description of stochastic complex systems, where scaling appears in the distribution functions of observable quantities of dynamical systems or processes. The distribution functions exhibit power laws, approximate power laws, or fat-tailed distributions. Understanding their origin and how power law exponents can be related to the particular nature of a system, is one of the aims of the book.We comment on fitting power laws.


2016 ◽  
Vol 30 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Xavier Gabaix

Many of the insights of economics seem to be qualitative, with many fewer reliable quantitative laws. However a series of power laws in economics do count as true and nontrivial quantitative laws—and they are not only established empirically, but also understood theoretically. I will start by providing several illustrations of empirical power laws having to do with patterns involving cities, firms, and the stock market. I summarize some of the theoretical explanations that have been proposed. I suggest that power laws help us explain many economic phenomena, including aggregate economic fluctuations. I hope to clarify why power laws are so special, and to demonstrate their utility. In conclusion, I list some power-law-related economic enigmas that demand further exploration. A formal definition may be useful.


2005 ◽  
Vol 73 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Timothy T. Clark ◽  
Ye Zhou

The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponent and virtual time origin for both sides. The analogy also bounds the power-law exponent between 2∕7 and 1∕2. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields fits that are in good agreement with experiment at modest density ratios.


Author(s):  
TAKAAKI OHNISHI ◽  
TAKAYUKI MIZUNO ◽  
CHIHIRO SHIMIZU ◽  
TSUTOMU WATANABE

How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


2015 ◽  
Vol 112 (29) ◽  
pp. E3950-E3958 ◽  
Author(s):  
Dongsung Huh ◽  
Terrence J. Sejnowski

In a planar free-hand drawing of an ellipse, the speed of movement is proportional to the −1/3 power of the local curvature, which is widely thought to hold for general curved shapes. We investigated this phenomenon for general curved hand movements by analyzing an optimal control model that maximizes a smoothness cost and exhibits the −1/3 power for ellipses. For the analysis, we introduced a new representation for curved movements based on a moving reference frame and a dimensionless angle coordinate that revealed scale-invariant features of curved movements. The analysis confirmed the power law for drawing ellipses but also predicted a spectrum of power laws with exponents ranging between 0 and −2/3 for simple movements that can be characterized by a single angular frequency. Moreover, it predicted mixtures of power laws for more complex, multifrequency movements that were confirmed with human drawing experiments. The speed profiles of arbitrary doodling movements that exhibit broadband curvature profiles were accurately predicted as well. These findings have implications for motor planning and predict that movements only depend on one radian of angle coordinate in the past and only need to be planned one radian ahead.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 38
Author(s):  
Marcel Ausloos ◽  
Philippe Bronlet

We recall the historically admitted prerequisites of Economic Freedom (EF). We have examined 908 data points for the Economic Freedom of the World (EFW) index and 1884 points for the Index of Economic Freedom (IEF); the studied periods are 2000–2006 and 1997–2007, respectively, thereby following the Berlin wall collapse, and including 11 September 2001. After discussing EFW index and IEF, in order to compare the indices, one needs to study their overlap in time and space. That leaves 138 countries to be examined over a period extending from 2000 to 2006, thus 2 sets of 862 data points. The data analysis pertains to the rank-size law technique. It is examined whether the distributions obey an exponential or a power law. A correlation with the country’s Gross Domestic Product (GDP), an admittedly major determinant of EF, follows, distinguishing regional aspects, i.e., defining 6 continents. Semi-log plots show that the EFW-rank relationship is exponential for countries of high rank (≥20); overall the log–log plots point to a behaviour close to a power law. In contrast, for the IEF, the overall ranking has an exponential behaviour; but the log–log plots point to the existence of a transitional point between two different power laws, i.e., near rank 10. Moreover, log–log plots of the EFW index relationship to country GDP are characterised by a power law, with a rather stable exponent (γ≃0.674) as a function of time. In contrast, log–log plots of the IEF relationship with the country’s gross domestic product point to a downward evolutive power law as a function of time. Markedly the two studied indices provide different aspects of EF.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Lisa Markhof ◽  
Mikhail Pletyukov ◽  
Volker Meden

The nonlinear Luttinger liquid phenomenology of one-dimensional correlated Fermi systems is an attempt to describe the effect of the band curvature beyond the Tomonaga-Luttinger liquid paradigm. It relies on the observation that the dynamical structure factor of the interacting electron gas shows a logarithmic threshold singularity when evaluated to first order perturbation theory in the two-particle interaction. This term was interpreted as the linear one in an expansion which was conjectured to resum to a power law. A field theory, the mobile impurity model, which is constructed such that it provides the power law in the structure factor, was suggested to be the proper effective model and used to compute the single-particle spectral function. This forms the basis of the nonlinear Luttinger liquid phenomenology. Surprisingly, the second order perturbative contribution to the structure factor was so far not studied. We first close this gap and show that it is consistent with the conjectured power law. Secondly, we critically assess the steps leading to the mobile impurity Hamiltonian. We show that the model does not allow to include the effect of the momentum dependence of the (bulk) two-particle potential. This dependence was recently shown to spoil power laws in the single-particle spectral function which previously were believed to be part of the Tomonaga-Luttinger liquid universality. Although our second order results for the structure factor are consistent with power-law scaling, this raises doubts that the conjectured nonlinear Luttinger liquid phenomenology can be considered as universal. We conclude that more work is required to clarify this.


Sign in / Sign up

Export Citation Format

Share Document