scholarly journals Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance

2021 ◽  
Vol 118 (31) ◽  
pp. e2107818118
Author(s):  
Tatiana Dimitriu ◽  
Andrew C. Matthews ◽  
Angus Buckling

Conjugative plasmids are mobile elements that spread horizontally between bacterial hosts and often confer adaptive phenotypes, including antimicrobial resistance (AMR). Theory suggests that opportunities for horizontal transmission favor plasmids with higher transfer rates, whereas selection for plasmid carriage favors less-mobile plasmids. However, little is known about the mechanisms leading to variation in transmission rates in natural plasmids or the resultant effects on their bacterial host. We investigated the evolution of AMR plasmids confronted with different immigration rates of susceptible hosts. Plasmid RP4 did not evolve in response to the manipulations, but plasmid R1 rapidly evolved up to 1,000-fold increased transfer rates in the presence of susceptible hosts. Most evolved plasmids also conferred on their hosts the ability to grow at high concentrations of antibiotics. This was because plasmids evolved greater copy numbers as a function of mutations in the copA gene controlling plasmid replication, causing both higher transfer rates and AMR. Reciprocally, plasmids with increased conjugation rates also evolved when selecting for high levels of AMR, despite the absence of susceptible hosts. Such correlated selection between plasmid transfer and AMR could increase the spread of AMR within populations and communities.

2020 ◽  
Author(s):  
Tatiana Dimitriu ◽  
Andrew Matthews ◽  
Angus Buckling

AbstractAntimicrobial resistance (AMR) in bacteria is commonly encoded on conjugative plasmids, mobile elements which can spread horizontally between hosts. Conjugative transfer disseminates AMR in communities but it remains unclear when and how high transfer rates evolve, and with which consequences. Here we studied experimentally the evolution of two antibiotic resistance encoding plasmids when confronted to different immigration rates of susceptible, plasmid-free hosts. While plasmid RP4 did not evolve detectably, plasmid R1 rapidly evolved up to 1000-fold increased transfer rates in the presence of susceptible hosts, at a cost to its host. Unexpectedly, most evolved plasmids also conferred to their hosts the ability to grow at high concentrations of antibiotics. The most common mutations in evolved plasmids were contained within the copA gene which controls plasmid replication and copy number. Evolved copA variants had elevated copy number, leading to both higher transfer rates and AMR. Due to these pleiotropic effects, host availability and antibiotics were each sufficient to select for highly transmissible plasmids conferring high levels of antibiotic resistance.


2004 ◽  
Vol 186 (1) ◽  
pp. 207-211 ◽  
Author(s):  
Jan A. Olsson ◽  
Johan Paulsson ◽  
Kurt Nordström

ABSTRACT Plasmid R1 is a low-copy-number plasmid that is present at a level of about four or five copies per average cell. The copy number is controlled posttranscriptionally at the level of synthesis of the rate-limiting initiator protein RepA. In addition to this, R1 has an auxiliary system that derepresses a second promoter at low copy numbers, leading to increased repA mRNA synthesis. This promoter is normally switched off by a constitutively synthesized plasmid-encoded repressor protein, CopB; in cells with low copy numbers, the concentration of CopB is low and the promoter is derepressed. Here we show that the rate of loss of a Par+ derivative of the basic replicon of R1 increased about sevenfold when the cells contained a high concentration of the CopB protein formed from a compatible plasmid.


2017 ◽  
Author(s):  
Ewa Chrostek ◽  
Luis Teixeira

AbstractWolbachia is a widespread, intracellular symbiont of arthropods, able to induce reproductive distortions and antiviral protection in insects. Wolbachia can also be pathogenic, as is the case with wMelPop, a virulent variant of the endosymbiont of Drosophila melanogaster. An extensive genomic amplification of the 20kb region encompassing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. The Octomom copy number in wMelPop can be highly variable between individual D. melanogaster flies, even when comparing siblings arising from a single female. Moreover, Octomom copy number can change rapidly between generations. These data suggest an intra-host variability in Octomom copy number between Wolbachia cells. Since wMelPop Wolbachia with different Octomom copy numbers grow at different rates, we hypothesized that selection could act on this intra-host variability. Here we tested if total Octomom copy number changes during the lifespan of individual Drosophila hosts, revealing selection for different Wolbachia populations. We performed a time course analysis of Octomom amplification in flies whose mothers were controlled for Octomom copy number. We show that despite the Octomom copy number being relatively stable it increases slightly throughout D. melanogaster adult life. This indicates that there is selection acting on the intra-host variation in the Octomom copy number over the lifespan of individual hosts. This within host selection for faster replicating bacterial symbionts may be in conflict with between host selection against highly pathogenic Wolbachia.


2016 ◽  
Vol 3 (11) ◽  
pp. 160449 ◽  
Author(s):  
Morgane Ollivier ◽  
Anne Tresset ◽  
Fabiola Bastian ◽  
Laetitia Lagoutte ◽  
Erik Axelsson ◽  
...  

Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinping Fan ◽  
Guanghao Luo ◽  
Yu S. Huang

Abstract Background Copy number alterations (CNAs), due to their large impact on the genome, have been an important contributing factor to oncogenesis and metastasis. Detecting genomic alterations from the shallow-sequencing data of a low-purity tumor sample remains a challenging task. Results We introduce Accucopy, a method to infer total copy numbers (TCNs) and allele-specific copy numbers (ASCNs) from challenging low-purity and low-coverage tumor samples. Accucopy adopts many robust statistical techniques such as kernel smoothing of coverage differentiation information to discern signals from noise and combines ideas from time-series analysis and the signal-processing field to derive a range of estimates for the period in a histogram of coverage differentiation information. Statistical learning models such as the tiered Gaussian mixture model, the expectation–maximization algorithm, and sparse Bayesian learning were customized and built into the model. Accucopy is implemented in C++ /Rust, packaged in a docker image, and supports non-human samples, more at http://www.yfish.org/software/. Conclusions We describe Accucopy, a method that can predict both TCNs and ASCNs from low-coverage low-purity tumor sequencing data. Through comparative analyses in both simulated and real-sequencing samples, we demonstrate that Accucopy is more accurate than Sclust, ABSOLUTE, and Sequenza.


2021 ◽  
Author(s):  
Matheus Fernandes Gyorfy ◽  
Emma R Miller ◽  
Justin L Conover ◽  
Corrinne E Grover ◽  
Jonathan F Wendel ◽  
...  

The plant genome is partitioned across three distinct subcellular compartments: the nucleus, mitochondria, and plastids. Successful coordination of gene expression among these organellar genomes and the nuclear genome is critical for plant function and fitness. Whole genome duplication events (WGDs) in the nucleus have played a major role in the diversification of land plants and are expected to perturb the relative copy number (stoichiometry) of nuclear, mitochondrial, and plastid genomes. Thus, elucidating the mechanisms whereby plant cells respond to the cytonuclear stoichiometric imbalance that follow WGDs represents an important yet underexplored question in understanding the evolutionary consequences of genome doubling. We used droplet digital PCR (ddPCR) to investigate the relationship between nuclear and organellar genome copy numbers in allopolyploids and their diploid progenitors in both wheat and Arabidopsis. Polyploids exhibit elevated organellar genome copy numbers per cell, largely preserving the cytonuclear stoichiometry observed in diploids despite the change in nuclear genome copy number. To investigate the timescale over which cytonuclear stoichiometry may respond to WGD, we also estimated organellar genome copy number in Arabidopsis synthetic autopolyploids and in a haploid-induced diploid line. We observed corresponding changes in organellar genome copy number in these laboratory-generated lines, indicating that at least some of the cellular response to cytonuclear stoichiometric imbalance is immediate following WGD. We conclude that increases in organellar genome copy numbers represent a common response to polyploidization, suggesting that maintenance of cytonuclear stoichiometry is an important component in establishing polyploid lineages.


2014 ◽  
Vol 12 (S1) ◽  
pp. S12-S16 ◽  
Author(s):  
Krishna Hari Dhakal ◽  
Myoung-Gun Choung ◽  
Young-Sun Hwang ◽  
Felix B. Fritschi ◽  
J. Grover Shannon ◽  
...  

Lutein has significant nutritional benefits for human health. Therefore, enhancing soybean lutein concentrations is an important breeding objective. However, selection for soybeans with high and environmentally stable lutein concentrations has been limited. The objectives of this study were to select soybeans with high seed lutein concentrations and to determine the stability of lutein concentrations across environments. A total of 314 genotypes were screened and 18 genotypes with high lutein concentrations and five genotypes with low lutein concentrations were selected for further examination. These 23 genotypes and two check varieties were evaluated under six environments (two planting dates for 2 years at one location and two planting dates for 1 year at another location). Lutein concentrations were influenced by genotype, environment and genotype × environment interactions. Genotypes with late maturity and low lutein concentrations were more stable than those with early maturity and high concentrations. Early (May) planting resulted in greater lutein concentrations than late (June) planting. Among the genotypes evaluated, PI603423B (7.7 μg/g) and PI89772 (5.8 μg/g) had the greatest mean lutein concentrations and exhibited medium and high stability across the six environments, respectively. Thus, these genotypes may be useful for breeding soybeans with high and stable seed lutein concentrations.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Oscar van Mastrigt ◽  
Marcel M. A. N. Lommers ◽  
Yorick C. de Vries ◽  
Tjakko Abee ◽  
Eddy J. Smid

ABSTRACTLactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-borne genes and the activity of the corresponding proteins are severely affected by changes in the numbers of plasmid copies. We studied the impact of growth rate on the dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strainLactococcus lactisFM03-V1 were selected, and these varied in size (3 to 39 kb), in replication mechanism (theta or rolling circle), and in putative (dairy-associated) functions. The copy numbers ranged from 1.5 to 40.5, and the copy number of theta-type replicating plasmids was negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h−1to 0.6 h−1), the copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates, showing that the plasmid replication rate was strictly controlled. One low-copy-number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations, reflected in a complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation, or the presence of citrate (maximum 2.2-fold), signifying the stability in copy number of the plasmids.IMPORTANCELactococcus lactisis extensively used in starter cultures for dairy fermentations. Important traits for the growth and survival ofL. lactisin dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation, oligopeptide uptake, and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-borne genes, it is important to know the factors that influence the plasmid copy numbers. We monitored the plasmid copy numbers ofL. lactisat near-zero growth rates, characteristic for cheese ripening. Moreover, we analyzed the effects of pH, nutrient limitation, and the presence of citrate. This showed that the plasmid copy numbers were stable, giving insight into plasmid copy number dynamics in dairy fermentations.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Akemi Katsurada ◽  
Kayoko Miyata ◽  
Andrei Derbenev ◽  
Andrea Zsombok

The intrarenal renin-angiotensin system (RAS) has been shown to play crucial roles in the development of hypertension and RAS associated kidney injury including diabetic nephropathy. Although some circulating RAS components are filtered into kidneys and contribute to the regulation of intrarenal RAS activity, evaluating expression levels of RAS components in the kidney is important to elucidate the mechanisms underlying intrarenal RAS activation. Digital PCR is a new technique that has been established to quantify absolute target gene levels, which allows for comparisons of different gene levels. Thus, this study was performed to establish profiles of absolute gene copy numbers for intrarenal RAS components in wild-type (WT) rats, WT and streptozotocin (STZ)-induced diabetic mice. Male Sprague-Dawley rats (N=5) and male C57BL/6J mice were used in this study. The mice were subjected to either control (N=5) or STZ (200 mg/kg, N=4) injection. Seven days after STZ injection, copy numbers of renal cortical angiotensinogen (AGT), angiotensin-converting enzyme (ACE), ACE2, angiotensin type 1 receptor a (AT1a), and AT2 mRNA were determined by a droplet digital PCR. Since (pro)renin proteins produced by juxtaglomerular cells are secreted to circulating system, analysis of renin mRNA was excluded from this evaluation. In the renal cortex of WT rats, the copy number of AGT was higher than other measured RAS components (AGT: 719.2±46.6, ACE: 116.0±14.9, ACE2: 183.6±21.5, AT1a: 196.0±25.2 copies in 1 ng total RNA). AT2 levels were lower than other components (0.068±0.01 copies). In WT mice, ACE exhibited the highest copy number in the components (AGT: 447.2±29.0, ACE: 1662.4±61.2, ACE2: 676.8±41.5, AT1a: 867.0±16.8, AT2: 0.049±0.01 copies). Although STZ-induced diabetes did not change ACE2 and AT1a, ACE levels were reduced (765.5±98.1 copies) and AT2 levels were augmented (0.10±0.01 copies) as previously demonstrated. Accordingly, the absolute quantification by digital PCR established precise gene profiles of intrarenal RAS components, which will provide rationales for targeting the each component in future studies. Furthermore, the results indicate that the high sensitive assay accurately quantifies rare target genes including intrarenal AT2.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Luise Krüger ◽  
Milena Stillfried ◽  
Carolin Prinz ◽  
Vanessa Schröder ◽  
Lena Katharina Neubert ◽  
...  

Porcine endogenous retroviruses (PERVs) are integrated in the genome of pigs and are transmitted like cellular genes from parents to the offspring. Whereas PERV-A and PERV-B are present in all pigs, PERV-C was found to be in many, but not all pigs. When PERV-C is present, recombination with PERV-A may happen and the PERV-A/C recombinants are characterized by a high replication rate. Until now, nothing has been known about the copy number of PERVs in wild boars and little is known about the prevalence of the phylogenetically youngest PERV-C in ancient wild boars. Here we investigated for the first time the copy number of PERVs in different populations of wild boars in and around Berlin using droplet digital PCR. Copy numbers between 3 and 69 per genome have been measured. A lower number but a higher variability was found compared to domestic pigs, including minipigs reported earlier (Fiebig et al., Xenotransplantation, 2018). The wild boar populations differed genetically and had been isolated during the existence of the Berlin wall. Despite this, the variations in copy number were larger in a single population compared to the differences between the populations. PERV-C was found in all 92 analyzed animals. Differences in the copy number of PERV in different organs of a single wild boar indicate that PERVs are also active in wild boars, replicating and infecting new cells as has been shown in domestic pigs.


Sign in / Sign up

Export Citation Format

Share Document