scholarly journals Research on Microscopic Evolution Laws of Sandstone Deformation and Failure Based on the Particle Discrete Element Method

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwei Cai ◽  
Tongqing Wu ◽  
Jian Lu ◽  
Yue Wu ◽  
Nianchun Xu

The fracture of sandstone is closely related to the condition of internal microcracks and the fabric of micrograin. The macroscopic mechanical property depends on its microscopic structures. However, it is difficult to obtain the law of the microcrack growth under loading by experiments. A series of microscopic sandstone models were established with particle flow code 3D (PFC3D) and based on the triaxial experiment results on sandstones. The experimental and numerical simulations of natural and saturated sandstones under different confining pressures were implemented. We analyzed the evolution of rock deformation and the rock fracture development from a microscopic view. Results show that although the sandstones are under different confining pressures, the law of microcrack growth is the same. That is, the number of the microcracks increases slowly in the initial stage and then increases exponentially. The number of shear cracks is more than the tensile cracks, and the proportion of the shear cracks increases with the increase of confining pressure. The cracking strength of natural and saturated sandstones is 26% and 27% of the peak strength, respectively. Under low confining pressure, the total number of cracks in the saturated sample is 20% more than that of the natural sample and the strongly scattered chain is barely seen. With the increase of the confining pressure, the effect of water on the total number of cracks is reduced and the distribution of the strong chain is even more uniform. In other words, it is the confining pressure that mainly affects the distribution of the force chain, irrespective of the state of the rock, natural or saturated. The research results reveal that the control mechanism of shear crack friction under the different stress states of a rock slope in the reservoir area provides a basis for evaluating the stability of rock mass and predicting the occurrence of geological disasters.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Linna Sun ◽  
Liming Zhang ◽  
Yu Cong ◽  
Yaduo Song ◽  
Keqiang He

AbstractFailure tests on marble during unloading confining-pressure under constant axial stress and simulations with the particle flow code were performed. The influence mechanism of the unloading rate of the confining pressure, initial unloading stress, and confining pressure on the failure characteristics of, and crack propagation in, marble was studied. By using the trial-and-error method, the conversion relationship between the unloading rates of confining pressures in laboratory tests and numerical simulations was ascertained. Micro-cracks formed in the unloading process of confining pressure are dominated by tension cracks, accompanied by shear cracks. The propagation of shear cracks lags that of tension cracks. As the confining pressure is increased, more cracks occur upon failure of the samples. The proportion of shear cracks increases while that of tension cracks decreases. The failure mode of samples undergoes a transition from shear-dominated failure to conjugated shear failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun Zhao ◽  
Tan Zhang

Brittle failure of hard rock poses a serious threat to the stability of surrounding rock in deep underground engineering. In order to study the deformation and failure characteristics of deep buried granite under high confining pressure cyclic loading and unloading, MTS815 electro-hydraulic servo rock test system was used to conduct cyclic loading and unloading tests under confining pressures of 15 MPa, 35 MPa, 45 MPa, and 55 MPa, and the corresponding stress-strain curves and deformation failure characteristic curves were obtained. The experimental results show the follows: (1) under the same confining pressure, the peak strength, crack initiation stress, crack damage stress, and Poisson’s ratio of the specimens under cyclic loading and unloading are larger than those under conventional triaxial loading and unloading, and the unloading elastic modulus is smaller than that, under conventional triaxial compression; (2) the results show that, under different confining pressures, the granite samples show obvious brittle failure characteristics, the elastic modulus and crack initiation stress increase first and then decrease with the confining pressure, the peak strength and crack damage stress of the samples increase linearly with the confining pressure, and Poisson’s ratio increases first and then remains unchanged with the confining pressure; (3) under the two kinds of stress conditions, the macroscopic failure of the samples is mainly shear failure. The deformation and failure law of granite samples revealed in this study has significant reference value for the selection of rock mass mechanical model of surrounding rock stability of underground engineering, the formulation of surrounding rock support countermeasures, and the evolution law of mechanical parameters with damage variables.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian-jun Ren ◽  
Shan-Yang Wei ◽  
Shi-Hai Shu ◽  
Wei-Dong Luo

To study the lateral deformation characteristics of coal under different confining pressures, coal compression experiments with confining pressures of 0 MPa, 3 MPa, 5 MPa, and 7 MPa were conducted under the same loading rate by using the TAW-2000 electrohydraulic servo rock mechanics experimental machine. The results of the study showed the following: at the initial stage of loading, the lateral strain of coal was about 12.22%–46.9% of the axial strain at the elastic deformation stage and 41.18%–64.96% of the axial strain at the inelastic deformation to peak stress stage. Compared with the experiment under 0 MPa confining pressure, the growth rate of the lateral strain of the coal under 3 MPa, 5 MPa, and 7 MPa confining pressures was much smaller than that of the corresponding axial strain. When the coal was damaged under different confining pressures, the lateral strain was maintained at about 0.6 × 10−2. Based on the field verification, we proposed that the lateral strain during the coal failure and the nonlinear region of the lateral axis ratio changing with time can be used as potential parameters for predicting the coal failure.


2013 ◽  
Vol 353-356 ◽  
pp. 608-613 ◽  
Author(s):  
Hong Hui Zhao ◽  
Hong Wen Jing ◽  
Hai Jian Su

Through experiments that were carried out to study the rock-like specimens with nine fissures under uniaxial compression by YNS2000 electro-hydraulic servo test system, to reveal the mechanism about strength and mechanism about crack expansion evolution laws of rock containing multiple fissures. Applying numerical simulation (RFPA) for the whole failure process of rock containing multiple fissures with reasonable parameters, the results present the influence mechanism of different confining pressures for strength and crack expansion characteristics. The experimental results show: the peak strength of specimens with nine fissures degrades obviously compared with complete specimens; Specimens containing multiple fissures begin to crack with tension cracks, and break with shear cracks finally. With the increase of confining pressure, the compressive strength of rock containing multiple fissures increases gradually; And crack expansion generally occurs on the middle diagonal fissure-plane under high confining pressure.


2016 ◽  
Vol 5 (2) ◽  
pp. 32 ◽  
Author(s):  
Matsee Kleepmek ◽  
Supattra K Hamrat ◽  
Kittitep Fuenkajorn

Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15×10-5 to 1.15×10-2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.


2020 ◽  
Author(s):  
Yulong Chen ◽  
Jianping Zuo ◽  
Dejun Liu ◽  
Yingjie Li ◽  
Zhenbo Wang

Abstract The paper presents experimental and numerical investigations on the response of rock-coal, coal-rock, and rock-coal-rock bimaterial composite structures under triaxial compression. The triaxial compression experiments are conducted under confining pressures in the range of 0–20 MPa. The resulting inside fracture networks are detected using X-ray-based computed tomography (CT). The experimentally observed data indicate that the mechanical parameters of the rock-coal-rock composites are superior to those of the rock-coal and coal-rock combinations. After compression failure, the coal-rock combination specimens are analyzed via X-ray CT. The results display that the failure of the coal-rock composite bodies primarily takes place within the coal. Further, the bursting proneness is reduced by increasing confining pressure. Subsequently, the corresponding numerical simulations of the experiments are carried out by exploiting the particle flow code (PFC). The numerical results reveal that coal is preferable with regard to energy storage and accumulation.


Author(s):  
Yulong Chen ◽  
Jianping Zuo ◽  
Dejun Liu ◽  
Yingjie Li ◽  
Zhenbo Wang

AbstractTo accurately predict coal burst hazards and estimate the failure of coal pillars in underground coal mining systems, it is of great significance to understand the mechanical behavior of coal-rock bimaterial composite structures. This paper presents experimental and numerical investigations on the response of rock-coal, coal-rock, and rock-coal-rock bimaterial composite structures under triaxial compression. The triaxial compression experiments are conducted under confining pressures in the range of 0–20 MPa. The resulting inside fracture networks are detected using X-ray-based computed tomography (CT). The experimentally observed data indicate that the mechanical parameters of the rock-coal-rock composites are superior to those of the rock-coal and coal-rock combinations. After compression failure, the coal-rock combination specimens are analyzed via X-ray CT. The results display that the failure of the coal-rock composite bodies primarily takes place within the coal. Further, the bursting proneness is reduced by increasing confining pressure. Subsequently, the corresponding numerical simulations of the experiments are carried out by using the particle flow code. The numerical results reveal that coal is vulnerable with regard to energy storage and accumulation.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


Author(s):  
F Li ◽  
V M Puri

A medium pressure (<21 MPa) flexible boundary cubical triaxial tester was designed to measure the true three-dimensional response of powders. In this study, compression behaviour and strength of a microcrystalline cellulose powder (Avicel® PH102), a spray-dried alumina powder (A16SG), and a fluid-bed-granulated silicon nitride based powder (KY3500) were measured. To characterize the mechanical behaviour, three types of triaxial stress paths, that is, the hydrostatic triaxial compression (HTC), the conventional triaxial compression (CTC), and the constant mean pressure triaxial compression (CMPTC) tests were performed. The HTC test measured the volumetric response of the test powders under isostatic pressure from 0 to 13.79MPa, during which the three powders underwent a maximum volumetric strain of 40.8 per cent for Avicel® PH102, 30.5 per cent for A16SG, and 33.0 per cent for KY3500. The bulk modulus values increased 6.4-fold from 57 to 367MPa for Avicel® PH102, 3.7-fold from 174 to 637 MPa for A16SG, and 8.1-fold from 74 to 597MPa for KY3500, when the isotropic stress increased from 0.69 to 13.79 MPa. The CTC and CMPTC tests measured the shear response of the three powders. From 0.035 to 3.45MPa confining pressure, the shear modulus increased 28.7-fold from 1.6 to 45.9MPa for Avicel® PH102, 35-fold from 1.7 to 60.5MPa for A16SG, and 28.5-fold from 1.5 to 42.8MPa for KY3500. In addition, the failure stresses of the three powders increased from 0.129 to 4.41 MPa for Avicel® PH102, 0.082 to 3.62 MPa for A16SG, and 0.090 to 4.66MPa for KY3500, respectively, when consolidation pressure increased from 0.035 to 3.45MPa. In addition, the shear modulus and failure stress values determined from the CTC test at 2.07, 2.76, and 3.45MPa confining pressures are consistently greater than those from the CMPTC test at the same constant mean pressures. This observation demonstrates the influence of stress paths on material properties. The CTT is a useful tool for characterizing the three-dimensional response of powders and powder mixtures.


2021 ◽  
Author(s):  
Genjiu Wang ◽  
Dandan Hu ◽  
Qianyao Li

Abstract It is generally believed that Cretaceous bioclastic limestone in Mesopotamia basin in central and southern Iraq is a typical porous reservoir with weak fracture development. Therefore, previous studies on the fracture of this kind of reservoir are rare. As a common seepage channel in carbonate rock, fracture has an important influence on single well productivity and waterflooding development of carbonate reservoir. Based on seismic, core and production data, this study analyzes the development characteristics of fractures from various aspects, and discusses the influence of fractures on water injection development of reservoirs. Through special processing of seismic data, it is found that there are a lot of micro fractures in Cretaceous bioclastic limestone reservoir. Most of these micro fractures are filled fractures without conductivity under the original reservoir conditions. However, with the further development of the reservoir, the reservoir pressure, oil-water movement, water injection and other conditions have changed, resulting in the original reservoir conditions of micro fractures with conductivity. The water cut of many production wells in the high part of reservoir rises sharply. In order to describe the three-dimensional spatial distribution of fractures, the core data is used to verify the seismic fracture distribution data volume. After the verification effect is satisfied, the three-dimensional fracture data volume is transformed into the geological model to establish the permeability field including fracture characteristics. The results of numerical simulation show that water mainly flows into the reservoir through high angle micro fractures. Fractures are identified by seismic and fracture model is established to effectively recognize the influence of micro fractures on water injection development in reservoir development process, which provides important guidance for oilfield development of Cretaceous bioclastic limestone reservoir in the central and southern Iraq fields.


Sign in / Sign up

Export Citation Format

Share Document